Suppr超能文献

基于证据的疾病控制综合决策支持:疟疾和血吸虫病概念验证。

Decision support for evidence-based integration of disease control: A proof of concept for malaria and schistosomiasis.

机构信息

Center for Global Health Science and Security, Georgetown University, Washington, DC, United States of America.

Talus Analytics, LLC, Lyons, CO, United States of America.

出版信息

PLoS Negl Trop Dis. 2018 Apr 12;12(4):e0006328. doi: 10.1371/journal.pntd.0006328. eCollection 2018 Apr.

Abstract

Designing and implementing effective programs for infectious disease control requires complex decision-making, informed by an understanding of the diseases, the types of disease interventions and control measures available, and the disease-relevant characteristics of the local community. Though disease modeling frameworks have been developed to address these questions and support decision-making, the complexity of current models presents a significant barrier to on-the-ground end users. The picture is further complicated when considering approaches for integration of different disease control programs, where co-infection dynamics, treatment interactions, and other variables must also be taken into account. Here, we describe the development of an application available on the internet with a simple user interface, to support on-the-ground decision-making for integrating disease control, given local conditions and practical constraints. The model upon which the tool is built provides predictive analysis for the effectiveness of integration of schistosomiasis and malaria control, two diseases with extensive geographical and epidemiological overlap. This proof-of-concept method and tool demonstrate significant progress in effectively translating the best available scientific models to support pragmatic decision-making on the ground, with the potential to significantly increase the impact and cost-effectiveness of disease control.

摘要

设计和实施有效的传染病控制计划需要进行复杂的决策,这需要深入了解疾病、现有的疾病干预和控制措施的类型,以及当地社区与疾病相关的特征。尽管已经开发了疾病建模框架来解决这些问题并支持决策制定,但当前模型的复杂性给实地终端用户带来了重大障碍。当考虑整合不同疾病控制项目的方法时,情况会更加复杂,因为还必须考虑共同感染动态、治疗相互作用和其他变量。在这里,我们描述了一个具有简单用户界面的互联网应用程序的开发,该应用程序旨在根据当地条件和实际限制,为整合疾病控制提供实地决策支持。该工具所基于的模型提供了对血吸虫病和疟疾控制整合有效性的预测分析,这两种疾病在地理和流行病学上有广泛的重叠。这种概念验证方法和工具展示了在将最佳现有科学模型有效地转化为支持实际决策方面取得的重大进展,有可能显著提高疾病控制的效果和成本效益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e64/5896906/00de92ceace6/pntd.0006328.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验