Suppr超能文献

精确构建碳-碳键的二维有序网络。

Constructing Two-Dimensional, Ordered Networks of Carbon-Carbon Bonds with Precision.

作者信息

Fu Jui-Han, Chen De-Chian, Wu Yen-Ju, Tung Vincent

机构信息

Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.

Center for Basic Research on Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.

出版信息

Precis Chem. 2024 Dec 4;3(1):3-9. doi: 10.1021/prechem.4c00070. eCollection 2025 Jan 27.

Abstract

Organic semiconducting nanomembranes (OSNMs), particularly carbon-based ones, are at the forefront of next-generation two-dimensional (2D) semiconductor research. These materials offer remarkable promise due to their diverse chemical properties and unique functionalities, paving the way for innovative applications across advanced semiconductor material sectors. Graphene stands out for its extraordinary mechanical strength, thermal conductivity, and superior charge transport capabilities, inspiring extensive research into other 2D carbon allotropes like graphyne and graphdiyne. With its high electron mobility and tunable bandgap, graphdiyne is particularly attractive for power-efficient electronic devices. However, synthesizing graphdiyne presents significant challenges, primarily due to the difficulty in achieving precise and deterministic control over the coupling of its monomers. This precision is crucial for determining the material's porosity, periodicity, and overall functionality. Innovative approaches have been developed to address these challenges, such as the strategic assembly of molecular building blocks at heterogeneous interfaces. Furthermore, data-driven techniques, such as machine learning and artificial intelligence (AI), are proving invaluable in this field, assisting in screening precursors, optimizing structural configurations, and predicting novel properties of these materials. These advancements are essential for producing durable monolayer sheets that can be integrated into existing electronic components. Despite these advancements, the integration of graphdiyne into semiconductor technology remains complex. Achieving long-range coherence in bonding configurations and enhancing charge transport characteristics are significant hurdles. Continued research into robust and controllable synthesis techniques is essential for unlocking the full potential of graphdiyne and other 2D materials, leading to more efficient, faster, and mechanically robust electronics.

摘要

有机半导体纳米膜(OSNMs),特别是碳基纳米膜,处于下一代二维(2D)半导体研究的前沿。由于其多样的化学性质和独特的功能,这些材料具有巨大的潜力,为先进半导体材料领域的创新应用铺平了道路。石墨烯因其非凡的机械强度、热导率和卓越的电荷传输能力而脱颖而出,激发了对其他二维碳同素异形体如石墨炔和石墨二炔的广泛研究。石墨二炔具有高电子迁移率和可调节的带隙,对节能电子器件特别有吸引力。然而,合成石墨二炔面临重大挑战,主要是由于难以对其单体的偶联实现精确和确定性的控制。这种精确性对于确定材料的孔隙率、周期性和整体功能至关重要。已经开发出创新方法来应对这些挑战,例如在异质界面上对分子构建块进行策略性组装。此外,数据驱动技术,如机器学习和人工智能(AI),在该领域证明具有不可估量的价值,有助于筛选前驱体、优化结构配置以及预测这些材料的新特性。这些进展对于生产可集成到现有电子元件中的耐用单分子层至关重要。尽管有这些进展,将石墨二炔集成到半导体技术中仍然很复杂。在键合配置中实现长程相干性和增强电荷传输特性是重大障碍。持续研究强大且可控的合成技术对于释放石墨二炔和其他二维材料的全部潜力至关重要,从而带来更高效、更快且机械性能更强的电子产品。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15ae/11775848/46963c64d74f/pc4c00070_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验