Suppr超能文献

快速采样氢键网络用于计算蛋白质设计。

Rapid Sampling of Hydrogen Bond Networks for Computational Protein Design.

机构信息

Program in Bioinformatics and Computational Biology , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States.

Department of Biochemistry , University of Washington , Seattle , Washington 98195 , United States.

出版信息

J Chem Theory Comput. 2018 May 8;14(5):2751-2760. doi: 10.1021/acs.jctc.8b00033. Epub 2018 Apr 20.

Abstract

Hydrogen bond networks play a critical role in determining the stability and specificity of biomolecular complexes, and the ability to design such networks is important for engineering novel structures, interactions, and enzymes. One key feature of hydrogen bond networks that makes them difficult to rationally engineer is that they are highly cooperative and are not energetically favorable until the hydrogen bonding potential has been satisfied for all buried polar groups in the network. Existing computational methods for protein design are ill-equipped for creating these highly cooperative networks because they rely on energy functions and sampling strategies that are focused on pairwise interactions. To enable the design of complex hydrogen bond networks, we have developed a new sampling protocol in the molecular modeling program Rosetta that explicitly searches for sets of amino acid mutations that can form self-contained hydrogen bond networks. For a given set of designable residues, the protocol often identifies many alternative sets of mutations/networks, and we show that it can readily be applied to large sets of residues at protein-protein interfaces or in the interior of proteins. The protocol builds on a recently developed method in Rosetta for designing hydrogen bond networks that has been experimentally validated for small symmetric systems but was not extensible to many larger protein structures and complexes. The sampling protocol we describe here not only recapitulates previously validated designs with performance improvements but also yields viable hydrogen bond networks for cases where the previous method fails, such as the design of large, asymmetric interfaces relevant to engineering protein-based therapeutics.

摘要

氢键网络在决定生物分子复合物的稳定性和特异性方面起着关键作用,而设计这种网络的能力对于工程新型结构、相互作用和酶至关重要。氢键网络的一个关键特征使得它们难以进行合理的工程设计,即它们具有高度协同性,并且只有在网络中所有埋藏的极性基团的氢键潜力得到满足时,才具有能量优势。现有的蛋白质设计计算方法不适合创建这些高度协同的网络,因为它们依赖于能量函数和采样策略,这些策略侧重于对相互作用。为了能够设计复杂的氢键网络,我们在分子建模程序 Rosetta 中开发了一种新的采样协议,该协议明确搜索可以形成自包含氢键网络的氨基酸突变集。对于一组给定的可设计残基,该协议通常会识别许多替代的突变/网络集,我们表明它可以很容易地应用于蛋白质-蛋白质界面或蛋白质内部的大组残基。该协议建立在 Rosetta 中最近开发的一种用于设计氢键网络的方法的基础上,该方法已经在小型对称系统中得到了实验验证,但不适用于许多更大的蛋白质结构和复合物。我们在这里描述的采样协议不仅可以提高性能,重现以前验证过的设计,而且还可以为以前的方法失败的情况(例如设计与基于蛋白质的治疗工程相关的大型不对称界面)生成可行的氢键网络。

相似文献

1
Rapid Sampling of Hydrogen Bond Networks for Computational Protein Design.快速采样氢键网络用于计算蛋白质设计。
J Chem Theory Comput. 2018 May 8;14(5):2751-2760. doi: 10.1021/acs.jctc.8b00033. Epub 2018 Apr 20.
9
Computational Design of Ligand Binding Proteins.配体结合蛋白的计算设计
Methods Mol Biol. 2017;1529:363-373. doi: 10.1007/978-1-4939-6637-0_19.

引用本文的文献

3
Design of pseudosymmetric protein hetero-oligomers.伪对称蛋白质异源寡聚体的设计
Nat Commun. 2024 Dec 18;15(1):10684. doi: 10.1038/s41467-024-54913-8.
4
design of peptides that bind specific conformers of α-synuclein.结合α-突触核蛋白特定构象的肽的设计。
Chem Sci. 2024 Mar 30;15(22):8414-8421. doi: 10.1039/d3sc06245g. eCollection 2024 Jun 5.
10
Protein Design: From the Aspect of Water Solubility and Stability.蛋白质设计:从水溶性和稳定性方面考虑。
Chem Rev. 2022 Sep 28;122(18):14085-14179. doi: 10.1021/acs.chemrev.1c00757. Epub 2022 Aug 3.

本文引用的文献

1
Cooperative Hydrogen Bonding and Enzyme Catalysis.协同氢键作用与酶催化
Angew Chem Int Ed Engl. 1998 Nov 16;37(21):2985-2990. doi: 10.1002/(SICI)1521-3773(19981116)37:21<2985::AID-ANIE2985>3.0.CO;2-8.
4
The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design.用于大分子建模与设计的罗塞塔全原子能量函数。
J Chem Theory Comput. 2017 Jun 13;13(6):3031-3048. doi: 10.1021/acs.jctc.7b00125. Epub 2017 May 12.
5
Artificial Diiron Enzymes with a De Novo Designed Four-Helix Bundle Structure.具有从头设计的四螺旋束结构的人工双铁酶。
Eur J Inorg Chem. 2015 Jul;2015(21):3371-3390. doi: 10.1002/ejic.201500470. Epub 2015 Jul 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验