Xu D, Tsai C J, Nussinov R
Laboratory of Mathematical Biology, IRSP, SAIC Frederick, NCI-FCRDC, MD 21702-1201, USA.
Protein Eng. 1997 Sep;10(9):999-1012. doi: 10.1093/protein/10.9.999.
To understand further, and to utilize, the interactions across protein-protein interfaces, we carried out an analysis of the hydrogen bonds and of the salt bridges in a collection of 319 non-redundant protein-protein interfaces derived from high-quality X-ray structures. We found that the geometry of the hydrogen bonds across protein interfaces is generally less optimal and has a wider distribution than typically observed within the chains. This difference originates from the more hydrophilic side chains buried in the binding interface than in the folded monomer interior. Protein folding differs from protein binding. Whereas in folding practically all degrees of freedom are available to the chain to attain its optimal configuration, this is not the case for rigid binding, where the protein molecules are already folded, with only six degrees of translational and rotational freedom available to the chains to achieve their most favorable bound configuration. These constraints enforce many polar/charged residues buried in the interface to form weak hydrogen bonds with protein atoms, rather than strongly hydrogen bonding to the solvent. Since interfacial hydrogen bonds are weaker than the intra-chain ones to compete with the binding of water, more water molecules are involved in bridging hydrogen bond networks across the protein interface than in the protein interior. Interfacial water molecules both mediate non-complementary donor-donor or acceptor-acceptor pairs, and connect non-optimally oriented donor-acceptor pairs. These differences between the interfacial hydrogen bonding patterns and the intra-chain ones further substantiate the notion that protein complexes formed by rigid binding may be far away from the global minimum conformations. Moreover, we summarize the pattern of charge complementarity and of the conservation of hydrogen bond network across binding interfaces. We further illustrate the utility of this study in understanding the specificity of protein-protein associations, and hence in docking prediction and molecular (inhibitor) design.
为了更深入地理解并利用蛋白质 - 蛋白质界面间的相互作用,我们对319个源自高质量X射线结构的非冗余蛋白质 - 蛋白质界面中的氢键和盐桥进行了分析。我们发现,跨蛋白质界面的氢键几何结构通常不太理想,且分布比链内通常观察到的情况更广泛。这种差异源于与折叠单体内部相比,更多亲水性侧链埋藏在结合界面中。蛋白质折叠与蛋白质结合不同。在折叠过程中,链几乎可以利用所有自由度来达到其最佳构象,而在刚性结合中情况并非如此,此时蛋白质分子已经折叠,链只有六个平移和旋转自由度来实现其最有利的结合构象。这些限制迫使许多埋藏在界面中的极性/带电残基与蛋白质原子形成弱氢键,而不是与溶剂形成强氢键。由于界面氢键比链内氢键弱,难以与水的结合竞争,因此与蛋白质内部相比,更多水分子参与跨越蛋白质界面的桥连氢键网络。界面水分子既介导非互补的供体 - 供体或受体 - 受体对,又连接取向不佳的供体 - 受体对。界面氢键模式与链内氢键模式之间的这些差异进一步证实了这样一种观点,即通过刚性结合形成的蛋白质复合物可能远离全局最小构象。此外,我们总结了跨结合界面的电荷互补模式和氢键网络的保守性。我们进一步说明了这项研究在理解蛋白质 - 蛋白质相互作用特异性方面的实用性,从而在对接预测和分子(抑制剂)设计方面的实用性。