Suppr超能文献

线粒体在干细胞命运和衰老中的作用。

The role of mitochondria in stem cell fate and aging.

机构信息

Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun-Yat Sen University, 510080, Guangzhou, China.

Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, CH-1015, Switzerland.

出版信息

Development. 2018 Apr 13;145(8):dev143420. doi: 10.1242/dev.143420.

Abstract

The importance of mitochondria in energy metabolism, signal transduction and aging in post-mitotic tissues has been well established. Recently, the crucial role of mitochondrial-linked signaling in stem cell function has come to light and the importance of mitochondria in mediating stem cell activity is becoming increasingly recognized. Despite the fact that many stem cells exhibit low mitochondrial content and a reliance on mitochondrial-independent glycolytic metabolism for energy, accumulating evidence has implicated the importance of mitochondrial function in stem cell activation, fate decisions and defense against senescence. In this Review, we discuss the recent advances that link mitochondrial metabolism, homeostasis, stress responses, and dynamics to stem cell function, particularly in the context of disease and aging. This Review will also highlight some recent progress in mitochondrial therapeutics that may present attractive strategies for improving stem cell function as a basis for regenerative medicine and healthy aging.

摘要

线粒体在能量代谢、信号转导和有丝分裂后组织的衰老中的重要性已得到充分证实。最近,线粒体相关信号在干细胞功能中的关键作用已经显现出来,线粒体在介导干细胞活性方面的重要性也越来越受到人们的认可。尽管许多干细胞表现出低线粒体含量,并依赖于线粒体非依赖性糖酵解代谢来获取能量,但越来越多的证据表明线粒体功能对于干细胞的激活、命运决定和抵御衰老至关重要。在这篇综述中,我们讨论了将线粒体代谢、动态平衡、应激反应联系起来的最新进展与干细胞功能之间的关系,特别是在疾病和衰老的背景下。这篇综述还将重点介绍线粒体治疗的一些最新进展,这些进展可能为改善干细胞功能提供有吸引力的策略,作为再生医学和健康衰老的基础。

相似文献

1
The role of mitochondria in stem cell fate and aging.
Development. 2018 Apr 13;145(8):dev143420. doi: 10.1242/dev.143420.
2
The Mitochondrial Basis of Aging.
Mol Cell. 2016 Mar 3;61(5):654-666. doi: 10.1016/j.molcel.2016.01.028.
3
Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function.
Antioxid Redox Signal. 2018 Jul 10;29(2):149-168. doi: 10.1089/ars.2017.7273. Epub 2017 Oct 26.
4
Mitochondrial unfolded protein response: a stress response with implications for fertility and reproductive aging.
Fertil Steril. 2019 Feb;111(2):197-204. doi: 10.1016/j.fertnstert.2018.11.048.
6
Mitochondrial plasticity in cell fate regulation.
J Biol Chem. 2019 Sep 20;294(38):13852-13863. doi: 10.1074/jbc.REV118.000828. Epub 2019 Aug 5.
7
Metabolism and the UPR(mt).
Mol Cell. 2016 Mar 3;61(5):677-682. doi: 10.1016/j.molcel.2016.02.004.
8
Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging.
Exp Biol Med (Maywood). 2013 May;238(5):450-60. doi: 10.1177/1535370213493069.
9
Mitofusins, from Mitochondria to Metabolism.
Mol Cell. 2016 Mar 3;61(5):683-694. doi: 10.1016/j.molcel.2016.02.022.
10
The mitochondrial genome in aging and senescence.
Ageing Res Rev. 2014 Nov;18:1-15. doi: 10.1016/j.arr.2014.07.001. Epub 2014 Jul 17.

引用本文的文献

2
Inhibition of miR-615-3p enhances dentinogenesis in scap via PVT1-mediated mitochondrial regulation.
Stem Cell Res Ther. 2025 Jul 31;16(1):416. doi: 10.1186/s13287-025-04528-7.
3
mRNA trafficking directs cell-size-scaling of mitochondria distribution and function.
Nat Commun. 2025 Jul 31;16(1):7029. doi: 10.1038/s41467-025-61940-6.
5
The active metabolite of Epimedii Folium promotes hippocampal neurogenesis in APP/PS1 mice by alleviating mitochondrial dysfunction.
Front Pharmacol. 2025 Apr 25;16:1546256. doi: 10.3389/fphar.2025.1546256. eCollection 2025.
7
neural stem progenitor cells exhibit a transient metabolic shift toward glycolysis during spinal cord regeneration.
Front Cell Dev Biol. 2025 Jan 29;13:1529093. doi: 10.3389/fcell.2025.1529093. eCollection 2025.
8
Mitofusin 2 displays fusion-independent roles in proteostasis surveillance.
Nat Commun. 2025 Feb 10;16(1):1501. doi: 10.1038/s41467-025-56673-5.
10
Mitonuclear Communication in Stem Cell Function.
Cell Prolif. 2025 May;58(5):e13796. doi: 10.1111/cpr.13796. Epub 2024 Dec 26.

本文引用的文献

1
Atad3a suppresses Pink1-dependent mitophagy to maintain homeostasis of hematopoietic progenitor cells.
Nat Immunol. 2018 Jan;19(1):29-40. doi: 10.1038/s41590-017-0002-1. Epub 2017 Nov 21.
2
Repairing Mitochondrial Dysfunction in Disease.
Annu Rev Pharmacol Toxicol. 2018 Jan 6;58:353-389. doi: 10.1146/annurev-pharmtox-010716-104908. Epub 2017 Sep 27.
3
Ascorbate regulates haematopoietic stem cell function and leukaemogenesis.
Nature. 2017 Sep 28;549(7673):476-481. doi: 10.1038/nature23876. Epub 2017 Aug 21.
4
Restoration of TET2 Function Blocks Aberrant Self-Renewal and Leukemia Progression.
Cell. 2017 Sep 7;170(6):1079-1095.e20. doi: 10.1016/j.cell.2017.07.032. Epub 2017 Aug 17.
6
Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals.
J Cell Biol. 2017 Jul 3;216(7):2027-2045. doi: 10.1083/jcb.201702058. Epub 2017 May 31.
7
The mitochondrial respiratory chain is essential for haematopoietic stem cell function.
Nat Cell Biol. 2017 Jun;19(6):614-625. doi: 10.1038/ncb3529. Epub 2017 May 15.
8
Mitochondria and Epigenetics - Crosstalk in Homeostasis and Stress.
Trends Cell Biol. 2017 Jun;27(6):453-463. doi: 10.1016/j.tcb.2017.02.004. Epub 2017 Mar 6.
9
Interplay between metabolic identities in the intestinal crypt supports stem cell function.
Nature. 2017 Mar 16;543(7645):424-427. doi: 10.1038/nature21673. Epub 2017 Mar 8.
10
Autophagy maintains the metabolism and function of young and old stem cells.
Nature. 2017 Mar 9;543(7644):205-210. doi: 10.1038/nature21388. Epub 2017 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验