Suppr超能文献

金属催化化学气相沉积生长的一维立方-SiC 纳米结构的浸润行为。

Wetting Behavior of Metal-Catalyzed Chemical Vapor Deposition-Grown One-Dimensional Cubic-SiC Nanostructures.

机构信息

State Key Laboratory of Silicon Materials, School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , China.

Materials Science Centre , Indian Institute of Technology Kharagpur , Kharagpur , West Bengal 721302 , India.

出版信息

Langmuir. 2018 May 8;34(18):5214-5224. doi: 10.1021/acs.langmuir.8b00238. Epub 2018 Apr 25.

Abstract

Superhydrophobic surfaces can be fabricated by using the self-assembled nanoarchitecture of 3C-SiC one-dimensional (1D) nanostructures as they are capable of forming a dense network of micro-nano air pockets without any help from external sources. Herein, the metal-catalyzed growth of 3C-SiC nanowires/nanorods on Si substrates via vapor-liquid-solid mechanism using five different catalysts, that is, chemically synthesized Au nanoparticles and direct current-sputtered thin films of Au, Cu, Ni, and Ti, is reported. Relatively new or unexplored catalysts such as thin films of Cu and Ti, as well as drop-cast Au nanoparticles, were used. An optimized and separate growth was carried out for each catalyst in an inductively heated horizontal cold-wall atmospheric pressure chemical vapor deposition reactor. An insight into the catalytic growth mechanism of 3C-SiC 1D nanostructures has been presented. All of the bare samples exhibited superhydrophilic behavior, whereas hierarchical Au/Pd nanostructure-coated 3C-SiC nanorod samples grown using Au and Ni thin-film catalysts exhibited hydrophobic and superhydrophobic behavior, respectively. As the better results were obtained for Ni thin-film catalysts in terms of growth density and high water contact angle (WCA ≈ 160°), therefore, the growth temperature, as well as the growth time-dependent wetting behavior, was also studied. It was found that the WCA increased as the growth time and temperature increased because of the increase in the growth density, and it finally reached to an optimum value at the growth temperature of 1200 °C and the growth time of 1 h. Furthermore, their wetting behavior was studied by using a variety of high surface tension (water, milk, tea, and glycerin) and low surface tension (organic liquids such as n-hexane, ethanol, etc.) liquids. High surface tension liquids exhibited superhydrophobic behavior, whereas low surface tension liquids exhibited superhydrophilic behavior. Hence, these fabricated nanostructured surfaces can be exploited for oil-water separation, electrowetting, water harvesting, self-cleaning, lab on a chip, and micro-/nanofluidic device applications.

摘要

超疏水表面可以通过使用 3C-SiC 一维(1D)纳米结构的自组装纳米结构来制造,因为它们能够在没有任何外部帮助的情况下形成密集的微纳米气穴网络。在此,通过使用五种不同的催化剂(即化学合成的 Au 纳米颗粒和直流溅射的 Au、Cu、Ni 和 Ti 薄膜),通过汽-液-固机制在 Si 衬底上金属催化生长 3C-SiC 纳米线/纳米棒。报道了相对较新或未探索的催化剂,如 Cu 和 Ti 薄膜以及滴落 Au 纳米颗粒。在感应加热的水平冷壁常压化学气相沉积反应器中,为每个催化剂分别进行了优化和单独的生长。提出了 3C-SiC 1D 纳米结构的催化生长机制的见解。所有裸样均表现出超亲水行为,而使用 Au 和 Ni 薄膜催化剂生长的分级 Au/Pd 纳米结构涂层 3C-SiC 纳米棒样则分别表现出疏水性和超疏水性。由于 Ni 薄膜催化剂在生长密度和高水接触角(WCA≈160°)方面表现出更好的结果,因此还研究了生长温度以及随时间变化的润湿行为。结果发现,由于生长密度的增加,WCA 随生长时间和温度的增加而增加,最终在 1200°C 的生长温度和 1 h 的生长时间达到最佳值。此外,还通过使用各种高表面张力(水、牛奶、茶和甘油)和低表面张力(正己烷、乙醇等有机液体)液体研究了它们的润湿行为。高表面张力液体表现出超疏水性,而低表面张力液体表现出超亲水性。因此,这些制造的纳米结构表面可用于油水分离、电润湿、水收集、自清洁、芯片上实验室和微/纳流控装置应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验