Université François Rabelais de Tours, CNRS, GREMAN UMR 7347, 16 rue Pierre et Marie Curie, Tours 37071, France.
Nanoscale Res Lett. 2014 Aug 3;9(1):379. doi: 10.1186/1556-276X-9-379. eCollection 2014.
A perfect control of nanostructure growth is a prerequisite for the development of electronic and optoelectronic device/systems. In this article, we demonstrate the growth of various ZnO-derived nanostructures, including well-ordered arrays of high aspect ratio single crystalline nanowires with preferred growth direction along the [0001] axis, nanowalls, and hybrid nanowire-nanowall structures. The growths of the various ZnO nanostructures have been carried out on SiC substrates in a horizontal furnace, using Au thin film as catalyst. From experimental observations, we have ascribed the growth mechanisms of the different ZnO nanostructures to be a combination of catalytic-assisted and non-catalytic-assisted vapor-liquid-solid (VLS) processes. We have also found that the different ZnO nanoarchitectures' material evolution is governed by a Zn cluster drift effects on the SiC surface mainly driven by growth temperature. Au thin film thickness, growth time, and temperature are the parameters to optimize in order to obtain the different ZnO nanoarchitectures.
对纳米结构生长的精确控制是开发电子和光电子器件/系统的前提。在本文中,我们展示了各种 ZnO 衍生纳米结构的生长,包括具有沿[0001]轴择优生长方向的高纵横比单晶纳米线的有序排列、纳米墙和混合纳米线-纳米墙结构。在水平炉中,使用 Au 薄膜作为催化剂,在 SiC 衬底上进行了各种 ZnO 纳米结构的生长。通过实验观察,我们将不同 ZnO 纳米结构的生长机制归因于催化辅助和非催化辅助的气-液-固(VLS)过程的结合。我们还发现,不同 ZnO 纳米结构的材料演变主要由生长温度驱动的 Zn 团簇在 SiC 表面上的漂移效应所控制。Au 薄膜厚度、生长时间和温度是优化以获得不同 ZnO 纳米结构的参数。