a Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry , Rheinische Friedrich-Wilhelms-Universität , Bonn , Germany.
Expert Opin Drug Discov. 2018 Jul;13(7):605-615. doi: 10.1080/17460441.2018.1465926. Epub 2018 Apr 19.
Activity landscapes (ALs) are representations and models of compound data sets annotated with a target-specific activity. In contrast to quantitative structure-activity relationship (QSAR) models, ALs aim at characterizing structure-activity relationships (SARs) on a large-scale level encompassing all active compounds for specific targets. The popularity of AL modeling has grown substantially with the public availability of large activity-annotated compound data sets. AL modeling crucially depends on molecular representations and similarity metrics used to assess structural similarity. Areas covered: The concepts of AL modeling are introduced and its basis in quantitatively assessing molecular similarity is discussed. The different types of AL modeling approaches are introduced. AL designs can broadly be divided into three categories: compound-pair based, dimensionality reduction, and network approaches. Recent developments for each of these categories are discussed focusing on the application of mathematical, statistical, and machine learning tools for AL modeling. AL modeling using chemical space networks is covered in more detail. Expert opinion: AL modeling has remained a largely descriptive approach for the analysis of SARs. Beyond mere visualization, the application of analytical tools from statistics, machine learning and network theory has aided in the sophistication of AL designs and provides a step forward in transforming ALs from descriptive to predictive tools. To this end, optimizing representations that encode activity relevant features of molecules might prove to be a crucial step.
活性图谱(AL)是用目标特定活性注释的化合物数据集的表示和模型。与定量构效关系(QSAR)模型相反,AL 旨在在包含特定靶标所有活性化合物的大规模水平上描述结构活性关系(SAR)。随着大量具有活性注释的化合物数据集的公开可用性,AL 建模的普及程度大大提高。AL 建模的关键取决于用于评估结构相似性的分子表示和相似性度量。涵盖的领域:介绍了 AL 建模的概念,并讨论了其在定量评估分子相似性方面的基础。介绍了不同类型的 AL 建模方法。AL 设计大致可以分为三类:基于化合物对、降维和网络方法。讨论了这些类别中的每一个类别的最新发展,重点是数学、统计学和机器学习工具在 AL 建模中的应用。更详细地介绍了使用化学空间网络进行 AL 建模。专家意见:AL 建模仍然是 SAR 分析的一种主要描述性方法。除了纯粹的可视化之外,来自统计学、机器学习和网络理论的分析工具的应用有助于改进 AL 设计,并在将 AL 从描述性工具转变为预测性工具方面迈出了一步。为此,证明优化表示分子活性相关特征的表示可能是一个关键步骤。