Karlov Dmitry S, Sosnin Sergey, Tetko Igor V, Fedorov Maxim V
Skolkovo Institute of Science and Technology, Skolkovo Innovation Center Moscow 143026 Russia
Syntelly LLC 42 Bolshoy Boulevard, Skolkovo Innovation Center Moscow 143026 Russia.
RSC Adv. 2019 Feb 11;9(9):5151-5157. doi: 10.1039/c8ra10182e. eCollection 2019 Feb 5.
A parametric t-SNE approach based on deep feed-forward neural networks was applied to the chemical space visualization problem. It is able to retain more information than certain dimensionality reduction techniques used for this purpose (principal component analysis (PCA), multidimensional scaling (MDS)). The applicability of this method to some chemical space navigation tasks (activity cliffs and activity landscapes identification) is discussed. We created a simple web tool to illustrate our work (http://space.syntelly.com).
一种基于深度前馈神经网络的参数化t-SNE方法被应用于化学空间可视化问题。与用于此目的的某些降维技术(主成分分析(PCA)、多维缩放(MDS))相比,它能够保留更多信息。讨论了该方法在一些化学空间导航任务(活性悬崖和活性景观识别)中的适用性。我们创建了一个简单的网络工具来展示我们的工作(http://space.syntelly.com)。