Suppr超能文献

植物转录因子结合基序的谱系特异性扩增由微型反向重复转座元件(MITEs)介导。

Plant Lineage-Specific Amplification of Transcription Factor Binding Motifs by Miniature Inverted-Repeat Transposable Elements (MITEs).

机构信息

CRAG (CSIC-IRTA-UAB-UB) Campus UAB, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain.

Emili Badiella 49, Terrassa, Spain.

出版信息

Genome Biol Evol. 2018 Apr 1;10(5):1210-1220. doi: 10.1093/gbe/evy073.

Abstract

Transposable elements are one of the main drivers of plant genome evolution. Transposon insertions can modify the gene coding capacity or the regulation of their expression, the latter being a more subtle effect, and therefore particularly useful for evolution. Transposons have been show to contain transcription factor binding sites that can be mobilized upon transposition with the potential to integrate new genes into transcriptional networks. Miniature inverted-repeat transposable elements (MITEs) are a type of noncoding DNA transposons that could be particularly suited as a vector to mobilize transcription factor binding sites and modify transcriptional networks during evolution. MITEs are small in comparison to other transposons and can be excised, which should make them less mutagenic when inserting into promoters. On the other hand, in spite of their cut-and-paste mechanisms of transposition, they can reach very high copy numbers in genomes. We have previously shown that MITEs have amplified and redistributed the binding motif of the E2F transcription factor in different Brassicas. Here, we show that MITEs have amplified and mobilized the binding motifs of the bZIP60 and PIF3 transcription factors in peach and Prunus mume, and the TCP15/23 binding motif in tomato. Our results suggest that MITEs could have rewired new genes into transcriptional regulatory networks that are responsible for important adaptive responses and breeding traits in plants, such as stress responses, flowering time, or fruit ripening. The results presented here therefore suggest a general impact of MITEs in the evolution of transcriptional regulatory networks in plants.

摘要

转座元件是植物基因组进化的主要驱动力之一。转座子的插入可以改变基因的编码能力或其表达的调控,后者是一种更微妙的效应,因此对进化特别有用。转座子已被证明含有转录因子结合位点,这些结合位点在转座时可以被激活,有可能将新基因整合到转录网络中。微型反向重复转座元件 (MITEs) 是一种非编码 DNA 转座子,特别适合作为载体,在进化过程中移动转录因子结合位点并修饰转录网络。与其他转座子相比,MITEs 较小,可以被切除,这应该使它们在插入启动子时的突变性降低。另一方面,尽管它们的转座机制是“切-贴”,但它们可以在基因组中达到非常高的拷贝数。我们之前已经表明,MITEs 在不同的芸薹属植物中扩增和重新分布了 E2F 转录因子的结合基序。在这里,我们表明 MITEs 在桃和梅花中扩增和移动了 bZIP60 和 PIF3 转录因子的结合基序,以及番茄中的 TCP15/23 结合基序。我们的研究结果表明,MITEs 可能已经将新基因重新布线到转录调控网络中,这些网络负责植物的重要适应性反应和繁殖特征,例如应激反应、开花时间或果实成熟。因此,这里呈现的结果表明 MITEs 在植物转录调控网络的进化中具有普遍的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4050/5950925/ea3a136d5f66/evy073f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验