Department of Physics, University of Helsinki, PO Box 64, FI-00014, Helsinki, Finland.
Department of Physics, University of Helsinki, PO Box 64, FI-00014, Helsinki, Finland; Institute of Biotechnology, University of Helsinki, PO Box 56, FI-00014, Helsinki, Finland.
Biochim Biophys Acta Bioenerg. 2018 Jul;1859(7):510-523. doi: 10.1016/j.bbabio.2018.04.001. Epub 2018 Apr 13.
Respiratory complex I is a giant redox-driven proton pump, and central to energy production in mitochondria and bacteria. It catalyses the reduction of quinone to quinol, and converts the free energy released into the endergonic proton translocation across the membrane. The proton pumping sets up the proton electrochemical gradient, which propels the synthesis of ATP. Despite the availability of extensive biochemical, biophysical and structural data on complex I, the mechanism of coupling between the electron and proton transfer reactions remain uncertain. In this work, we discuss current state-of-the-art in the field with particular emphasis on the molecular mechanism of respiratory complex I, as deduced from computational modeling and simulation approaches, but in strong alliance with the experimental data. This leads to novel synthesis of mechanistic ideas on a highly complex enzyme of the electron transport chain that has been associated with a number of mitochondrial and neurodegenerative disorders.
呼吸复合物 I 是一种巨大的氧化还原驱动质子泵,是线粒体和细菌中能量产生的核心。它催化醌向氢醌的还原,并将释放的自由能转化为跨膜的内向质子转移。质子泵建立质子电化学梯度,推动 ATP 的合成。尽管有大量关于复合物 I 的生化、生物物理和结构数据,但电子和质子转移反应之间的偶联机制仍然不确定。在这项工作中,我们讨论了该领域的最新进展,特别强调了从计算建模和模拟方法推断出的呼吸复合物 I 的分子机制,但与实验数据密切相关。这导致了对电子传递链中高度复杂的酶的机械论思想的新综合,该酶与许多线粒体和神经退行性疾病有关。