Institute of Industrial Science, The University of Tokyo , 4-6-1 Komaba , Meguro-ku , Tokyo 153-8505 , Japan.
Nano Lett. 2018 May 9;18(5):3209-3212. doi: 10.1021/acs.nanolett.8b00929. Epub 2018 Apr 17.
The chirality of materials results in a wide variety of advanced technologies including image display, data storage, light management including negative refraction, and enantioselective catalysis and sensing. Here, we introduce chirality to plasmonic nanostructures by using circularly polarized light as the sole chiral source for the first time. Gold nanocuboids as precursors on a semiconductor were irradiated with circularly polarized light to localize electric fields at specific corners of the cuboids depending on the handedness of light and deposited dielectric moieties as electron oscillation boosters by the localized electric field. Thus, plasmonic nanostructures with high chirality were developed. The present bottom-up method would allow the large-scale and cost-effective fabrication of chiral materials and further applications to functional materials and devices.
材料的手性导致了广泛的先进技术,包括图像显示、数据存储、包括负折射在内的光管理,以及对映选择性催化和传感。在这里,我们首次通过使用圆偏振光作为唯一的手性源,将手性引入到等离子体纳米结构中。金纳米立方体形核在半导体上,用圆偏振光照射,根据光的手性将电场定域在立方体形核的特定角上,并通过局域电场沉积介电部分作为电子振荡增强剂。因此,开发出了具有高手性的等离子体纳米结构。这种自下而上的方法将允许大规模、具有成本效益的手性材料的制造,并进一步应用于功能材料和器件。