Department of Materials Science & Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.
Center for Nanoscale Materials , Argonne National Laboratory , Argonne , Illinois 60439 , United States.
Nano Lett. 2018 May 9;18(5):2780-2786. doi: 10.1021/acs.nanolett.7b04603. Epub 2018 Apr 23.
Quantum devices formed in high-electron-mobility semiconductor heterostructures provide a route through which quantum mechanical effects can be exploited on length scales accessible to lithography and integrated electronics. The electrostatic definition of quantum dots in semiconductor heterostructure devices intrinsically involves the lithographic fabrication of intricate patterns of metallic electrodes. The formation of metal/semiconductor interfaces, growth processes associated with polycrystalline metallic layers, and differential thermal expansion produce elastic distortion in the active areas of quantum devices. Understanding and controlling these distortions present a significant challenge in quantum device development. We report synchrotron X-ray nanodiffraction measurements combined with dynamical X-ray diffraction modeling that reveal lattice tilts with a depth-averaged value up to 0.04° and strain on the order of 10 in the two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure. Elastic distortions in GaAs/AlGaAs heterostructures modify the potential energy landscape in the 2DEG due to the generation of a deformation potential and an electric field through the piezoelectric effect. The stress induced by metal electrodes directly impacts the ability to control the positions of the potential minima where quantum dots form and the coupling between neighboring quantum dots.
在高电子迁移率半导体异质结构中形成的量子器件提供了一种途径,可以在可进行光刻和集成电子学的长度尺度上利用量子力学效应。半导体异质结构器件中量子点的静电定义本质上涉及到金属电极的复杂图案的光刻制造。金属/半导体界面的形成、多晶金属层相关的生长过程以及热膨胀的差异会在量子器件的有源区产生弹性变形。理解和控制这些变形是量子器件开发中的一个重大挑战。我们报告了同步加速器 X 射线纳米衍射测量结果以及动态 X 射线衍射模型,这些结果揭示了在 GaAs/AlGaAs 异质结构中二维电子气(2DEG)中存在高达 0.04°的平均深度晶格倾斜和 10 量级的应变。由于压电效应产生的变形势和电场,GaAs/AlGaAs 异质结构中的弹性变形会改变 2DEG 中的势能景观。金属电极产生的应力直接影响控制量子点形成的势能最小值的位置以及相邻量子点之间耦合的能力。