School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Road, Nangang District, Harbin, 150001, China.
Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China.
Macromol Biosci. 2018 May;18(5):e1700408. doi: 10.1002/mabi.201700408. Epub 2018 Apr 17.
A method is developed that can rapidly produce blood vessel-like structures by bonding cell-laden electrospinning (ES) films layer by layer using fibrin glue within 90 min. This strategy allows control of cell type, cell orientation, and material composition in separate layers. Furthermore, ES films with thicker fibers (polylactic-co-glycolic acid, fiber diameter: ≈3.7 µm) are used as cell-seeding layers to facilitate the cell in-growth; those with thinner fibers (polylactic acid, fiber diameter: ≈1.8 µm) are used as outer reinforcing layers to improve the mechanical strength and reduce the liquid leakage of the scaffold. Cells grow, proliferate, and migrate well in the multilayered structure. This design aims at a new type of blood vessel substitute with flexible control of parameters and implementation of functions.
一种方法被开发出来,通过在 90 分钟内使用纤维蛋白胶将细胞负载的静电纺丝(ES)膜层层粘合,可快速生成血管样结构。该策略允许在单独的层中控制细胞类型、细胞取向和材料组成。此外,使用较厚纤维(聚乳酸-共-羟基乙酸,纤维直径:≈3.7μm)的 ES 膜作为细胞接种层,以促进细胞向内生长;使用较细纤维(聚乳酸,纤维直径:≈1.8μm)作为外部增强层,以提高机械强度并减少支架的液体渗漏。细胞在多层结构中生长、增殖和迁移良好。该设计旨在开发一种新型的血管替代物,可灵活控制参数并实现功能。