Suppr超能文献

通过无偏基因组范围正向遗传筛选检测功能蛋白结构域。

Detection of functional protein domains by unbiased genome-wide forward genetic screening.

机构信息

The Wellcome/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, CB2 1QN, Cambridge, UK.

AstraZeneca, Oncology DNA damage response group, Hodgkin Building, 310 Cambridge Science Park, Milton Road, CB4 0WG, Cambridge, UK.

出版信息

Sci Rep. 2018 Apr 18;8(1):6161. doi: 10.1038/s41598-018-24400-4.

Abstract

Establishing genetic and chemo-genetic interactions has played key roles in elucidating mechanisms by which certain chemicals perturb cellular functions. In contrast to gene disruption/depletion strategies to identify mechanisms of drug resistance, searching for point-mutational genetic suppressors that can identify separation- or gain-of-function mutations has been limited. Here, by demonstrating its utility in identifying chemical-genetic suppressors of sensitivity to the DNA topoisomerase I poison camptothecin or the poly(ADP-ribose) polymerase inhibitor olaparib, we detail an approach allowing systematic, large-scale detection of spontaneous or chemically-induced suppressor mutations in yeast or haploid mammalian cells in a short timeframe, and with potential applications in other haploid systems. In addition to applications in molecular biology research, this protocol can be used to identify drug targets and predict drug-resistance mechanisms. Mapping suppressor mutations on the primary or tertiary structures of protein suppressor hits provides insights into functionally relevant protein domains. Importantly, we show that olaparib resistance is linked to missense mutations in the DNA binding regions of PARP1, but not in its catalytic domain. This provides experimental support to the concept of PARP1 trapping on DNA as the prime source of toxicity to PARP inhibitors, and points to a novel olaparib resistance mechanism with potential therapeutic implications.

摘要

建立遗传和化疗遗传相互作用在阐明某些化学物质扰乱细胞功能的机制方面发挥了关键作用。与基因敲除/耗竭策略不同,该策略旨在识别耐药机制,寻找可以识别分离或获得功能突变的点突变遗传抑制剂受到限制。在这里,通过证明其在鉴定对 DNA 拓扑异构酶 I 毒药喜树碱或聚(ADP-核糖)聚合酶抑制剂奥拉帕利敏感性的化学遗传抑制剂中的效用,我们详细介绍了一种方法,该方法允许在短时间内在酵母或单倍体哺乳动物细胞中系统地、大规模地检测自发或化学诱导的抑制突变,并且在其他单倍体系统中具有潜在的应用。除了在分子生物学研究中的应用外,该方案还可用于鉴定药物靶点和预测药物耐药机制。在蛋白质抑制物命中的一级或三级结构上对抑制突变进行定位,为功能相关的蛋白质结构域提供了深入的了解。重要的是,我们发现奥拉帕利耐药与 PARP1 的 DNA 结合区域中的错义突变有关,而与其催化结构域无关。这为 PARP1 在 DNA 上的“捕获”作为 PARP 抑制剂毒性的主要来源的概念提供了实验支持,并指出了一种新的奥拉帕利耐药机制,具有潜在的治疗意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1757/5906580/b145c888dec1/41598_2018_24400_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验