Trulla Lluis L, Di Stefano Nicola, Giuliani Alessandro
Centre de Recerca Puig Rodó, Girona, Spain.
Institute of Philosophy of Scientific and Technological Practice and Laboratory of Developmental Neuroscience, Università Campus Bio-Medico di Roma, Rome, Italy.
Front Psychol. 2018 Apr 4;9:381. doi: 10.3389/fpsyg.2018.00381. eCollection 2018.
In sixth century BC, Pythagoras discovered the mathematical foundation of musical consonance and dissonance. When auditory frequencies in small-integer ratios are combined, the result is a harmonious perception. In contrast, most frequency combinations result in audible, off-centered by-products labeled "beating" or "roughness;" these are reported by most listeners to sound dissonant. In this paper, we consider second-order beats, a kind of beating recognized as a product of neural processing, and demonstrate that the data-driven approach of Recurrence Quantification Analysis (RQA) allows for the reconstruction of the order in which interval ratios are ranked in music theory and harmony. We take advantage of computer-generated sounds containing all intervals over the span of an octave. To visualize second-order beats, we use a glissando from the unison to the octave. This procedure produces a profile of recurrence values that correspond to subsequent epochs along the original signal. We find that the higher recurrence peaks exactly match the epochs corresponding to just intonation frequency ratios. This result indicates a link between consonance and the dynamical features of the signal. Our findings integrate a new element into the existing theoretical models of consonance, thus providing a computational account of consonance in terms of dynamical systems theory. Finally, as it considers general features of acoustic signals, the present approach demonstrates a universal aspect of consonance and dissonance perception and provides a simple mathematical tool that could serve as a common framework for further neuro-psychological and music theory research.
公元前6世纪,毕达哥拉斯发现了音乐和谐与不和谐的数学基础。当小整数比的听觉频率组合在一起时,结果是一种和谐的感知。相比之下,大多数频率组合会产生可听见的、偏离中心的副产品,称为“拍频”或“粗糙度”;大多数听众报告说这些听起来不和谐。在本文中,我们考虑二阶拍频,这是一种被认为是神经处理产物的拍频,并证明递归量化分析(RQA)的数据驱动方法允许重建音乐理论与和声中区间比率的排序顺序。我们利用计算机生成的包含一个八度音程内所有音程的声音。为了可视化二阶拍频,我们使用从同度到八度的滑音。这个过程产生了与原始信号上后续时期相对应的递归值轮廓。我们发现较高的递归峰值与对应于纯律频率比的时期完全匹配。这一结果表明了和谐与信号动态特征之间的联系。我们的发现为现有的和谐理论模型融入了一个新元素,从而从动态系统理论的角度提供了一个关于和谐的计算解释。最后,由于它考虑了声学信号的一般特征,本方法展示了和谐与不和谐感知的一个普遍方面,并提供了一个简单的数学工具,可以作为进一步神经心理学和音乐理论研究的共同框架。