Suppr超能文献

调性音程空间中和弦进行的调性紧张度轮廓计算模型。

A Computational Model of Tonal Tension Profile of Chord Progressions in the Tonal Interval Space.

作者信息

Navarro-Cáceres María, Caetano Marcelo, Bernardes Gilberto, Sánchez-Barba Mercedes, Merchán Sánchez-Jara Javier

机构信息

Department of Computer Sciences, University of Salamanca, Pza de los Caídos, s/n, 37007 Salamanca, Spain.

Schulich School of Music & CIRMMT, McGill University, 555 Sherbrooke Street West, Montréal, QC H3A 1E3, Canada.

出版信息

Entropy (Basel). 2020 Nov 13;22(11):1291. doi: 10.3390/e22111291.

Abstract

In tonal music, musical tension is strongly associated with musical expression, particularly with expectations and emotions. Most listeners are able to perceive musical tension subjectively, yet musical tension is difficult to be measured objectively, as it is connected with musical parameters such as rhythm, dynamics, melody, harmony, and timbre. Musical tension specifically associated with melodic and harmonic motion is called tonal tension. In this article, we are interested in perceived changes of tonal tension over time for chord progressions, dubbed . We propose an objective measure capable of capturing tension profile according to different tonal music parameters, namely, tonal distance, dissonance, voice leading, and hierarchical tension. We performed two experiments to validate the proposed model of tonal tension profile and compared against Lerdahl's model and MorpheuS across 12 chord progressions. Our results show that the considered four tonal parameters contribute differently to the perception of tonal tension. In our model, their relative importance adopts the following weights, summing to unity: dissonance (0.402), hierarchical tension (0.246), tonal distance (0.202), and voice leading (0.193). The assumption that listeners perceive global changes in tonal tension as prototypical profiles is strongly suggested in our results, which outperform the state-of-the-art models.

摘要

在调性音乐中,音乐张力与音乐表达密切相关,尤其是与期望和情感相关。大多数听众能够主观地感知音乐张力,然而音乐张力很难客观地测量,因为它与节奏、力度、旋律、和声和音色等音乐参数相关。与旋律和和声进行特别相关的音乐张力称为调性张力。在本文中,我们感兴趣的是和弦进行中调性张力随时间的感知变化,称为 。我们提出了一种客观的测量方法,能够根据不同的调性音乐参数捕捉张力轮廓,即调性距离、不协和度、声部进行和层次张力。我们进行了两项实验来验证所提出的调性张力轮廓模型,并在12个和弦进行中与莱达尔模型和MorpheuS进行了比较。我们的结果表明,所考虑的四个调性参数对调性张力感知的贡献各不相同。在我们的模型中,它们的相对重要性采用以下权重,总和为1:不协和度(0.402)、层次张力(0.246)、调性距离(0.202)和声部进行(0.193)。我们的结果强烈表明,听众将调性张力的全局变化感知为典型轮廓的假设,我们的结果优于现有模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c20/7712964/baedf2bbc3bd/entropy-22-01291-g0A1a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验