Suppr超能文献

基于实验数据,利用机器学习识别材料的相变:探索铁电弛豫体中的集体动力学。

Machine learning-enabled identification of material phase transitions based on experimental data: Exploring collective dynamics in ferroelectric relaxors.

作者信息

Li Linglong, Yang Yaodong, Zhang Dawei, Ye Zuo-Guang, Jesse Stephen, Kalinin Sergei V, Vasudevan Rama K

机构信息

Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

出版信息

Sci Adv. 2018 Mar 30;4(3):eaap8672. doi: 10.1126/sciadv.aap8672. eCollection 2018 Mar.

Abstract

Exploration of phase transitions and construction of associated phase diagrams are of fundamental importance for condensed matter physics and materials science alike, and remain the focus of extensive research for both theoretical and experimental studies. For the latter, comprehensive studies involving scattering, thermodynamics, and modeling are typically required. We present a new approach to data mining multiple realizations of collective dynamics, measured through piezoelectric relaxation studies, to identify the onset of a structural phase transition in nanometer-scale volumes, that is, the probed volume of an atomic force microscope tip. Machine learning is used to analyze the multidimensional data sets describing relaxation to voltage and thermal stimuli, producing the temperature-bias phase diagram for a relaxor crystal without the need to measure (or know) the order parameter. The suitability of the approach to determine the phase diagram is shown with simulations based on a two-dimensional Ising model. These results indicate that machine learning approaches can be used to determine phase transitions in ferroelectrics, providing a general, statistically significant, and robust approach toward determining the presence of critical regimes and phase boundaries.

摘要

探索相变以及构建相关的相图对于凝聚态物理和材料科学都至关重要,并且仍然是理论和实验研究广泛关注的焦点。对于后者,通常需要进行涉及散射、热力学和建模的综合研究。我们提出了一种新的数据挖掘方法,通过压电弛豫研究来实现对集体动力学的多重实现,以识别纳米尺度体积中结构相变的起始点,即原子力显微镜尖端的探测体积。机器学习用于分析描述对电压和热刺激弛豫的多维数据集,从而生成弛豫铁电体晶体的温度-偏置相图,而无需测量(或知道)序参量。基于二维伊辛模型的模拟表明了该方法确定相图的适用性。这些结果表明,机器学习方法可用于确定铁电体中的相变,为确定临界区域和相界的存在提供了一种通用、具有统计意义且稳健的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e32b/5903900/853106e8ca97/aap8672-F1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验