文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于开磁芯磁集中器的霍尔效应电流传感器建模

Modelling of a Hall Effect-Based Current Sensor with an Open Core Magnetic Concentrator.

作者信息

Yatchev Ivan, Sen Mehmet, Balabozov Iosko, Kostov Ivan

机构信息

Faculty of Electrical Engineering, Tehcnical University of Sofia, 1000 Sofia, Bulgaria.

Vocational School of Technical Sciences, Uludağ University, 16059 Nilufer/Bursa, Turkey.

出版信息

Sensors (Basel). 2018 Apr 19;18(4):1260. doi: 10.3390/s18041260.


DOI:10.3390/s18041260
PMID:29671788
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5948860/
Abstract

The present paper deals with the modelling of a Hall effect current sensor with open core magnetic concentrator. 3D magnetic field modelling is carried out using the finite element method (FEM) and Comsol Multiphysics software. Two rectangular core constructions are considered. Different geometric parameters of the magnetic concentrator are varied and their influence on the sensor characteristic is studied, with the aim of reducing the dependence on the output signal on the distance to the conductor. Of the studied parameters, core window length leads to the most significant change in the sensor characteristic. Future work can include the optimization of the sensor construction.

摘要

本文研究了一种带有开口磁芯磁集中器的霍尔效应电流传感器的建模。使用有限元方法(FEM)和Comsol Multiphysics软件进行三维磁场建模。考虑了两种矩形磁芯结构。改变磁集中器的不同几何参数,并研究它们对传感器特性的影响,目的是减少输出信号对到导体距离的依赖性。在所研究的参数中,磁芯窗口长度对传感器特性的影响最为显著。未来的工作可以包括传感器结构的优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/ad20433e56a9/sensors-18-01260-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/e5cc4d8ea760/sensors-18-01260-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/330156635a84/sensors-18-01260-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/0e850ecfacef/sensors-18-01260-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/6b27cac37b80/sensors-18-01260-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/5f20a0c00eca/sensors-18-01260-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/05be56e83275/sensors-18-01260-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/ea93cb0af54c/sensors-18-01260-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/481a1e50a74f/sensors-18-01260-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/0e6d8039ea72/sensors-18-01260-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/834b0133cc4c/sensors-18-01260-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/86c5e0e5f922/sensors-18-01260-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/69b95a9db79f/sensors-18-01260-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/a18a2c1d2f49/sensors-18-01260-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/1ec80c1b822e/sensors-18-01260-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/ad20433e56a9/sensors-18-01260-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/e5cc4d8ea760/sensors-18-01260-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/330156635a84/sensors-18-01260-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/0e850ecfacef/sensors-18-01260-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/6b27cac37b80/sensors-18-01260-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/5f20a0c00eca/sensors-18-01260-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/05be56e83275/sensors-18-01260-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/ea93cb0af54c/sensors-18-01260-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/481a1e50a74f/sensors-18-01260-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/0e6d8039ea72/sensors-18-01260-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/834b0133cc4c/sensors-18-01260-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/86c5e0e5f922/sensors-18-01260-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/69b95a9db79f/sensors-18-01260-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/a18a2c1d2f49/sensors-18-01260-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/1ec80c1b822e/sensors-18-01260-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/5948860/ad20433e56a9/sensors-18-01260-g015.jpg

相似文献

[1]
Modelling of a Hall Effect-Based Current Sensor with an Open Core Magnetic Concentrator.

Sensors (Basel). 2018-4-19

[2]
High Accuracy Open-Type Current Sensor with a Differential Planar Hall Resistive Sensor.

Sensors (Basel). 2018-7-12

[3]
Magnetic biosensors: Modelling and simulation.

Biosens Bioelectron. 2017-12-20

[4]
A New Design of a Single-Device 3D Hall Sensor: Cross-Shaped 3D Hall Sensor.

Sensors (Basel). 2018-4-2

[5]
Enhancing Wire-Rope Damage Signals Based on a Radial Magnetic Concentrator Bridge Circuit.

Sensors (Basel). 2022-5-11

[6]
Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter.

Sensors (Basel). 2016-9-15

[7]
A Sensor for Broken Wire Detection of Steel Wire Ropes Based on the Magnetic Concentrating Principle.

Sensors (Basel). 2019-8-30

[8]
Double-Gap Magnetic Flux Concentrator Design for High-Sensitivity Magnetic Tunnel Junction Sensors.

Sensors (Basel). 2019-10-15

[9]
Design and analysis of finite element based sensors for diagnosis of liver disorders using biocompatible metals.

Technol Health Care. 2014

[10]
Finite Element Modelling of a Reflection Differential Split-D Eddy Current Probe Scanning Surface Notches.

J Nondestr Eval. 2020

引用本文的文献

[1]
A Novel Open-Loop Current Sensor Based on Multiple Spin Valve Sensors and Magnetic Shunt Effect with Position Deviation Calibration.

Micromachines (Basel). 2025-8-19

[2]
Design and Optimization of Multi-Stage TMR Sensors for Power Equipment AC/DC Leakage Current Detection.

Sensors (Basel). 2023-5-14

[3]
ISO26262-Compliant Inductive Long-Stroke Linear-Position Sensors as an Alternative to Hall-Based Sensors for Automotive Applications.

Sensors (Basel). 2022-12-26

[4]
Low Field Optimization of a Non-Contacting High-Sensitivity GMR-Based DC/AC Current Sensor.

Sensors (Basel). 2021-4-6

[5]
Design and Application of MEMS-Based Hall Sensor Array for Magnetic Field Mapping.

Micromachines (Basel). 2021-3-12

[6]
A Comprehensive Review of Integrated Hall Effects in Macro-, Micro-, Nanoscales, and Quantum Devices.

Sensors (Basel). 2020-7-27

[7]
Practical Adaptation of a Low-Cost Voltage Transducer with an Open Feedback Loop for Precise Measurement of Distorted Voltages.

Sensors (Basel). 2019-3-2

[8]
High Accuracy Open-Type Current Sensor with a Differential Planar Hall Resistive Sensor.

Sensors (Basel). 2018-7-12

本文引用的文献

[1]
Magnetic biosensors: Modelling and simulation.

Biosens Bioelectron. 2017-12-20

[2]
Optimum Design Rules for CMOS Hall Sensors.

Sensors (Basel). 2017-4-4

[3]
Flexible Hall sensors based on graphene.

Nanoscale. 2016-4-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索