Suppr超能文献

一种使用鞋垫传感器系统对来自低加速度和高加速度日常生活活动的跌倒进行分类的新型检测模型及其最佳特征。

A Novel Detection Model and Its Optimal Features to Classify Falls from Low- and High-Acceleration Activities of Daily Life Using an Insole Sensor System.

作者信息

Cates Benjamin, Sim Taeyong, Heo Hyun Mu, Kim Bori, Kim Hyunggun, Mun Joung Hwan

机构信息

Department of Bio-Mechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Korea.

Department of Research and Development, Biomaterial Team, Medical Device Development Center, KBIO HEALTH, 123 Osongsaengmyung-ro, Osong-eub, Heungdeok-gu, Cheongju, Chungbuk 28160, Korea.

出版信息

Sensors (Basel). 2018 Apr 17;18(4):1227. doi: 10.3390/s18041227.

Abstract

In order to overcome the current limitations in current threshold-based and machine learning-based fall detectors, an insole system and novel fall classification model were created. Because high-acceleration activities have a high risk for falls, and because of the potential damage that is associated with falls during high-acceleration activities, four low-acceleration activities, four high-acceleration activities, and eight types of high-acceleration falls were performed by twenty young male subjects. Encompassing a total of 800 falls and 320 min of activities of daily life (ADLs), the created Support Vector Machine model’s Leave-One-Out cross-validation provides a fall detection sensitivity (0.996), specificity (1.000), and accuracy (0.999). These classification results are similar or superior to other fall detection models in the literature, while also including high-acceleration ADLs to challenge the classification model, and simultaneously reducing the burden that is associated with wearable sensors and increasing user comfort by inserting the insole system into the shoe.

摘要

为了克服当前基于阈值和基于机器学习的跌倒探测器的局限性,创建了一种鞋垫系统和新型跌倒分类模型。由于高加速活动有很高的跌倒风险,并且由于高加速活动期间跌倒会带来潜在损害,20名年轻男性受试者进行了四项低加速活动、四项高加速活动以及八种高加速跌倒。所创建的支持向量机模型的留一法交叉验证涵盖了总共800次跌倒和320分钟的日常生活活动(ADL),其跌倒检测灵敏度为0.996,特异性为1.000,准确率为0.999。这些分类结果与文献中的其他跌倒检测模型相似或更优,同时纳入了高加速ADL以挑战分类模型,并且通过将鞋垫系统插入鞋子,减少了与可穿戴传感器相关的负担并提高了用户舒适度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2247/5948845/8216d6ce1e6b/sensors-18-01227-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验