School of Information and Communication Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China.
School of Information and Communication Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China.
J Neurosci Methods. 2018 Jul 1;304:24-38. doi: 10.1016/j.jneumeth.2018.02.013. Epub 2018 Apr 16.
Component splitting at higher model orders is a widely accepted finding for independent component analysis (ICA) of functional magnetic resonance imaging (fMRI) data. However, our recent study found that intact components occurred with subcomponents at higher model orders.
This study investigated model order effects on ICA of resting-state complex-valued fMRI data from 82 subjects, which included 40 healthy controls (HCs) and 42 schizophrenia patients. In addition, we explored underlying causes for distinct component splitting between complex-valued data and magnitude-only data by examining model order effects on ICA of phase fMRI data. A best run selection method was proposed to combine subject averaging and a one-sample t-test. We selected the default mode network (DMN)-, visual-, and sensorimotor-related components from the best run of ICA at varying model orders from 10 to 140.
Results show that component integration occurred in complex-valued and phase analyses, whereas component splitting emerged in magnitude-only analysis with increasing model order. Incorporation of phase data appears to play a complementary role in preserving integrity of brain networks.
COMPARISON WITH EXISTING METHOD(S): When compared with magnitude-only analysis, the intact DMN component obtained in complex-valued analysis at higher model orders exhibited highly significant subject-level differences between HCs and patients with schizophrenia. We detected significantly higher activity and variation in anterior areas for HCs and in posterior areas for patients with schizophrenia.
These results demonstrate the potential of complex-valued fMRI data to contribute generally and specifically to brain network analysis in identification of schizophrenia-related changes.
在更高的模型阶次下进行成分拆分是功能磁共振成像(fMRI)数据独立成分分析(ICA)的一个被广泛认可的发现。然而,我们最近的研究发现,在更高的模型阶次下会出现完整的成分和子成分。
本研究调查了模型阶次效应对 82 名被试静息态复数 fMRI 数据 ICA 的影响,其中包括 40 名健康对照(HCs)和 42 名精神分裂症患者。此外,我们通过检查相位 fMRI 数据 ICA 中模型阶次效应对不同的成分拆分的潜在原因,探索了复数数据和幅度数据之间明显的成分拆分的原因。提出了一种最佳运行选择方法,将被试平均和单一样本 t 检验相结合。我们从复数和幅度数据 ICA 的最佳运行中选择默认模式网络(DMN)、视觉和感觉运动相关成分,并在 10 到 140 的不同模型阶次下进行分析。
结果表明,在复数和相位分析中发生了成分整合,而在幅度分析中随着模型阶次的增加则出现了成分拆分。相位数据的纳入似乎在保持大脑网络的完整性方面发挥了补充作用。
与幅度分析相比,在更高的模型阶次下复数分析中获得的完整 DMN 成分在 HCs 和精神分裂症患者之间表现出高度显著的个体差异。我们检测到 HCs 的前区和精神分裂症患者的后区的活动和变异性显著更高。
这些结果表明,复数 fMRI 数据具有一般和特定的潜力,可以为大脑网络分析在识别与精神分裂症相关的变化方面做出贡献。