Durmo Faris, Lätt Jimmy, Rydelius Anna, Engelholm Silke, Kinhult Sara, Askaner Krister, Englund Elisabet, Bengzon Johan, Nilsson Markus, Björkman-Burtscher Isabella M, Chenevert Thomas, Knutsson Linda, Sundgren Pia C
Department of Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden.
Centre for Medical Imaging and Physiology, Skåne University Hospital, Lund and Malmö, Sweden.
Tomography. 2018 Mar;4(1):14-25. doi: 10.18383/j.tom.2017.00020.
The aim was to evaluate volume, diffusion, and perfusion metrics for better presurgical differentiation between high-grade gliomas (HGG), low-grade gliomas (LGG), and metastases (MET). For this retrospective study, 43 patients with histologically verified intracranial HGG (n = 18), LGG (n = 10), and MET (n = 15) were chosen. Preoperative magnetic resonance data included pre- and post-gadolinium contrast-enhanced T1-weighted fluid-attenuated inversion recover, cerebral blood flow (CBF), cerebral blood volume (CBV), fractional anisotropy, and apparent diffusion coefficient maps used for quantification of magnetic resonance biometrics by manual delineation of regions of interest. A binary logistic regression model was applied for multiparametric analysis and receiver operating characteristic (ROC) analysis. Statistically significant differences were found for normalized-ADC-tumor (nADC-T), normalized-CBF-tumor (nCBF-T), normalized-CBV-tumor (nCBV-T), and normalized-CBF-edema (nCBF-E) between LGG and HGG, and when these metrics were combined, HGG could be distinguished from LGG with a sensitivity and specificity of 100%. The only metric to distinguish HGG from MET was the normalized-ADC-E with a sensitivity of 68.8% and a specificity of 80%. LGG can be distinguished from MET by combining edema volume (Vol-E), Vol-E/tumor volume (Vol-T), nADC-T, nCBF-T, nCBV-T, and nADC-E with a sensitivity of 93.3% and a specificity of 100%. The present study confirms the usability of a multibiometric approach including volume, perfusion, and diffusion metrics in differentially diagnosing brain tumors in preoperative patients and adds to the growing body of evidence in the clinical field in need of validation and standardization.
目的是评估体积、扩散和灌注指标,以便在术前更好地区分高级别胶质瘤(HGG)、低级别胶质瘤(LGG)和转移瘤(MET)。在这项回顾性研究中,选择了43例经组织学证实的颅内HGG(n = 18)、LGG(n = 10)和MET(n = 15)患者。术前磁共振数据包括钆对比剂增强前后的T1加权液体衰减反转恢复序列、脑血流量(CBF)、脑血容量(CBV)、各向异性分数和表观扩散系数图,通过手动勾勒感兴趣区域用于定量磁共振生物特征。应用二元逻辑回归模型进行多参数分析和受试者操作特征(ROC)分析。发现LGG和HGG之间在归一化表观扩散系数肿瘤(nADC-T)、归一化脑血流量肿瘤(nCBF-T)、归一化脑血容量肿瘤(nCBV-T)和归一化脑血流量水肿(nCBF-E)方面存在统计学显著差异,当这些指标联合使用时,HGG与LGG的区分灵敏度和特异度均为100%。区分HGG和MET的唯一指标是归一化表观扩散系数水肿(nADC-E),灵敏度为68.8%,特异度为80%。通过联合水肿体积(Vol-E)、Vol-E/肿瘤体积(Vol-T)、nADC-T、nCBF-T、nCBV-T和nADC-E可将LGG与MET区分开,灵敏度为93.3%,特异度为100%。本研究证实了包括体积、灌注和扩散指标的多生物特征方法在术前患者脑肿瘤鉴别诊断中的可用性,并为临床领域中需要验证和标准化的越来越多的证据增添了内容。