Suppr超能文献

孤立性脑转移瘤与多形性胶质母细胞瘤的鉴别:一种使用磁共振扩散加权成像和灌注成像联合的预测性多参数方法

Differentiation of solitary brain metastasis from glioblastoma multiforme: a predictive multiparametric approach using combined MR diffusion and perfusion.

作者信息

Bauer Adam Herman, Erly William, Moser Franklin G, Maya Marcel, Nael Kambiz

机构信息

Department of Medical Imaging, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Taper Bldg., Suite M335, Los Angeles, CA, 90048, USA,

出版信息

Neuroradiology. 2015 Jul;57(7):697-703. doi: 10.1007/s00234-015-1524-6. Epub 2015 Apr 7.

Abstract

INTRODUCTION

Solitary brain metastasis (MET) and glioblastoma multiforme (GBM) can appear similar on conventional MRI. The purpose of this study was to identify magnetic resonance (MR) perfusion and diffusion-weighted biomarkers that can differentiate MET from GBM.

METHODS

In this retrospective study, patients were included if they met the following criteria: underwent resection of a solitary enhancing brain tumor and had preoperative 3.0 T MRI encompassing diffusion tensor imaging (DTI), dynamic contrast-enhanced (DCE), and dynamic susceptibility contrast (DSC) perfusion. Using co-registered images, voxel-based fractional anisotropy (FA), mean diffusivity (MD), K(trans), and relative cerebral blood volume (rCBV) values were obtained in the enhancing tumor and non-enhancing peritumoral T2 hyperintense region (NET2). Data were analyzed by logistic regression and analysis of variance. Receiver operating characteristic (ROC) analysis was performed to determine the optimal parameter/s and threshold for predicting of GBM vs. MET.

RESULTS

Twenty-three patients (14 M, age 32-78 years old) met our inclusion criteria. Pathology revealed 13 GBMs and 10 METs. In the enhancing tumor, rCBV, K(trans), and FA were higher in GBM, whereas MD was lower, neither without statistical significance. In the NET2, rCBV was significantly higher (p = 0.05) in GBM, but MD was significantly lower (p < 0.01) in GBM. FA and K(trans) were higher in GBM, though not reaching significance. The best discriminative power was obtained in NET2 from a combination of rCBV, FA, and MD, resulting in an area under the curve (AUC) of 0.98.

CONCLUSION

The combination of MR diffusion and perfusion matrices in NET2 can help differentiate GBM over solitary MET with diagnostic accuracy of 98%.

摘要

引言

孤立性脑转移瘤(MET)和多形性胶质母细胞瘤(GBM)在传统磁共振成像(MRI)上可能表现相似。本研究的目的是确定能够区分MET和GBM的磁共振(MR)灌注和扩散加权生物标志物。

方法

在这项回顾性研究中,符合以下标准的患者被纳入:接受了孤立性强化脑肿瘤切除术,并且术前有包含扩散张量成像(DTI)、动态对比增强(DCE)和动态磁敏感对比(DSC)灌注的3.0T MRI检查。利用配准图像,在强化肿瘤和非强化瘤周T2高信号区域(NET2)获取基于体素的分数各向异性(FA)、平均扩散率(MD)、Ktrans和相对脑血容量(rCBV)值。数据通过逻辑回归和方差分析进行分析。进行受试者操作特征(ROC)分析以确定预测GBM与MET的最佳参数和阈值。

结果

23例患者(14例男性,年龄32 - 78岁)符合我们的纳入标准。病理结果显示13例GBM和10例MET。在强化肿瘤中,GBM的rCBV、Ktrans和FA较高,而MD较低,但均无统计学意义。在NET2中,GBM的rCBV显著更高(p = 0.05),但GBM的MD显著更低(p < 0.01)。GBM的FA和Ktrans较高,尽管未达到显著水平。从rCBV、FA和MD的组合在NET2中获得了最佳判别能力,曲线下面积(AUC)为0.98。

结论

NET2中MR扩散和灌注矩阵的组合有助于以98%的诊断准确率区分GBM和孤立性MET。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验