Suppr超能文献

iProtGly-SS:基于序列和结构特征鉴定蛋白质糖基化位点。

iProtGly-SS: Identifying protein glycation sites using sequence and structure based features.

机构信息

Department of CSE, University of Dhaka, Dhaka, Bangladesh.

Department of CSE, United International University, Dhaka, Bangladesh.

出版信息

Proteins. 2018 Jul;86(7):777-789. doi: 10.1002/prot.25511. Epub 2018 May 2.

Abstract

Glycation is chemical reaction by which sugar molecule bonds with a protein without the help of enzymes. This is often cause to many diseases and therefore the knowledge about glycation is very important. In this paper, we present iProtGly-SS, a protein lysine glycation site identification method based on features extracted from sequence and secondary structural information. In the experiments, we found the best feature groups combination: Amino Acid Composition, Secondary Structure Motifs, and Polarity. We used support vector machine classifier to train our model and used an optimal set of features using a group based forward feature selection technique. On standard benchmark datasets, our method is able to significantly outperform existing methods for glycation prediction. A web server for iProtGly-SS is implemented and publicly available to use: http://brl.uiu.ac.bd/iprotgly-ss/.

摘要

糖基化是一种化学反应,其中糖分子在没有酶的帮助下与蛋白质结合。这常常导致许多疾病,因此糖基化的知识非常重要。在本文中,我们提出了 iProtGly-SS,一种基于序列和二级结构信息提取特征的蛋白质赖氨酸糖基化位点识别方法。在实验中,我们发现了最佳的特征组合:氨基酸组成、二级结构模体和极性。我们使用支持向量机分类器来训练我们的模型,并使用基于组的前向特征选择技术来选择最佳的特征集。在标准基准数据集上,我们的方法在糖基化预测方面明显优于现有方法。我们实现了一个 iProtGly-SS 的 Web 服务器,并公开发布供使用:http://brl.uiu.ac.bd/iprotgly-ss/。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验