Centro de Ciencias de la Tierra, Universidad Veracruzana, Xalapa 91090, VER, Mexico.
Department of Electrical and Electronic Engineering, National Technological Institute of Mexico/IT, Monterrey 67170, NL, Mexico.
Sensors (Basel). 2022 Jul 13;22(14):5237. doi: 10.3390/s22145237.
One of the hallmarks of diabetes is an increased modification of cellular proteins. The most prominent type of modification stems from the reaction of methylglyoxal with arginine and lysine residues, leading to structural and functional impairments of target proteins. For lysine glycation, several algorithms allow a prediction of occurrence; thus, making it possible to pinpoint likely targets. However, according to our knowledge, no approaches have been published for predicting the likelihood of arginine glycation. There are indications that arginine and not lysine is the most prominent target for the toxic dialdehyde. One of the reasons why there is no arginine glycation predictor is the limited availability of quantitative data. Here, we used a recently published high-quality dataset of arginine modification probabilities to employ an artificial neural network strategy. Despite the limited data availability, our results achieve an accuracy of about 75% of correctly predicting the exact value of the glycation probability of an arginine-containing peptide without setting thresholds upon whether it is decided if a given arginine is modified or not. This contribution suggests a solution for predicting arginine glycation of short peptides.
糖尿病的一个特征是细胞蛋白质的修饰增加。最突出的修饰类型源于甲基乙二醛与精氨酸和赖氨酸残基的反应,导致靶蛋白的结构和功能受损。对于赖氨酸糖基化,有几种算法可以预测其发生的可能性;因此,有可能确定可能的靶标。然而,据我们所知,还没有发表用于预测精氨酸糖基化可能性的方法。有迹象表明,精氨酸而不是赖氨酸是这种有毒二醛的最主要靶标。之所以没有精氨酸糖基化预测器,原因之一是定量数据的有限可用性。在这里,我们使用了最近发表的高质量精氨酸修饰概率数据集,采用人工神经网络策略。尽管数据可用性有限,但我们的结果在预测精氨酸含量肽的糖基化概率的精确值方面达到了约 75%的准确率,而无需在是否决定给定的精氨酸是否被修饰的情况下设置阈值。这一贡献为预测短肽的精氨酸糖基化提供了一种解决方案。