Suppr超能文献

机器学习能够准确预测天冬酰胺脱酰胺的概率和速率。

Machine Learning Enables Accurate Prediction of Asparagine Deamidation Probability and Rate.

作者信息

Delmar Jared A, Wang Jihong, Choi Seo Woo, Martins Jason A, Mikhail John P

机构信息

Analytical Sciences, Biopharmaceutical Development, AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, USA.

David H. Koch School of Chemical Engineering Practice, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Mol Ther Methods Clin Dev. 2019 Oct 1;15:264-274. doi: 10.1016/j.omtm.2019.09.008. eCollection 2019 Dec 13.

Abstract

The spontaneous conversion of asparagine residues to aspartic acid or iso-aspartic acid, via deamidation, is a major pathway of protein degradation and is often seriously disruptive to biological systems. Deamidation has been shown to negatively affect both stability and biological function of diverse classes of proteins. During protein therapeutics development, deamidation liabilities that are overlooked necessitate expensive and time-consuming remediation strategies, sometimes leading to termination of the project. In this paper, we apply machine learning to a large (n = 776) liquid chromatography-tandem mass spectrometry (LC-MS/MS) dataset of monoclonal antibody peptides to create computational models for the post-translational modification asparagine deamidation, using the random decision forest method. We show that our categorical model predicts antibody deamidation with nearly 5% increased accuracy and 0.2 MCC over the best currently available models. Surprisingly, our model also paces or outperforms advanced and conventional models on an independent non-antibody dataset. In addition to deamidation probability, we are able to accurately predict deamidation rate (R = 0.963 and Q2 = 0.822), a capability with no peer in current models. This method should enable significant improvement in protein candidate selection, especially in biopharmaceutical development, and can be applied with similar accuracy to enzymes, monoclonal antibodies, next-generation formats, vaccine component antigens, and gene therapy vectors such as adeno-associated virus.

摘要

天冬酰胺残基通过脱酰胺作用自发转化为天冬氨酸或异天冬氨酸,是蛋白质降解的主要途径,并且常常严重破坏生物系统。脱酰胺作用已被证明会对多种蛋白质的稳定性和生物学功能产生负面影响。在蛋白质治疗药物开发过程中,被忽视的脱酰胺作用问题需要采取昂贵且耗时的补救策略,有时甚至会导致项目终止。在本文中,我们将机器学习应用于一个大型(n = 776)的单克隆抗体肽液相色谱 - 串联质谱(LC-MS/MS)数据集,使用随机决策森林方法创建用于翻译后修饰天冬酰胺脱酰胺作用的计算模型。我们表明,我们的分类模型预测抗体脱酰胺作用的准确率比目前最好的现有模型提高了近5%,马修斯相关系数(MCC)提高了0.2。令人惊讶的是,我们的模型在一个独立的非抗体数据集上也达到或超过了先进和传统模型。除了脱酰胺概率,我们还能够准确预测脱酰胺速率(R = 0.963,Q2 = 0.822),这是目前模型所没有的能力。这种方法应该能够显著改进蛋白质候选物的筛选,特别是在生物制药开发中,并且可以以类似的准确率应用于酶、单克隆抗体、下一代形式、疫苗成分抗原以及腺相关病毒等基因治疗载体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3089/6923510/4e098609908b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验