Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Pathology and Lab Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
J Magn Reson Imaging. 2019 Jan;49(1):184-194. doi: 10.1002/jmri.26053. Epub 2018 Apr 20.
Accurate differentiation of brain infections from necrotic glioblastomas (GBMs) may not always be possible on morphologic MRI or on diffusion tensor imaging (DTI) and dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) if these techniques are used independently.
To investigate the combined analysis of DTI and DSC-PWI in distinguishing brain injections from necrotic GBMs.
Retrospective.
Fourteen patients with brain infections and 21 patients with necrotic GBMs.
FIELD STRENGTH/SEQUENCE: 3T MRI, DTI, and DSC-PWI.
Parametric maps of mean diffusivity (MD), fractional anisotropy (FA), coefficient of linear (CL), and planar anisotropy (CP) and leakage corrected cerebral blood volume (CBV) were computed and coregistered with postcontrast T -weighted and FLAIR images. All lesions were segmented into the central core and enhancing region. For each region, median values of MD, FA, CL, CP, relative CBV (rCBV), and top 90 percentile of rCBV (rCBV ) were measured.
All parameters from both regions were compared between brain infections and necrotic GBMs using Mann-Whitney tests. Logistic regression analyses were performed to obtain the best model in distinguishing these two conditions.
From the central core, significantly lower MD (0.90 × 10 ± 0.44 × 10 mm /s vs. 1.66 × 10 ± 0.62 × 10 mm /s, P = 0.001), significantly higher FA (0.15 ± 0.06 vs. 0.09 ± 0.03, P < 0.001), and CP (0.07 ± 0.03 vs. 0.04 ± 0.02, P = 0.009) were observed in brain infections compared to those in necrotic GBMs. Additionally, from the contrast-enhancing region, significantly lower rCBV (1.91 ± 0.95 vs. 2.76 ± 1.24, P = 0.031) and rCBV (3.46 ± 1.41 vs. 5.89 ± 2.06, P = 0.001) were observed from infective lesions compared to necrotic GBMs. FA from the central core and rCBV from enhancing region provided the best classification model in distinguishing brain infections from necrotic GBMs, with a sensitivity of 91% and a specificity of 93%.
Combined analysis of DTI and DSC-PWI may provide better performance in differentiating brain infections from necrotic GBMs.
1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:184-194.
如果仅依靠形态学 MRI、弥散张量成像(DTI)或动态磁敏感对比灌注加权成像(DSC-PWI)等单一技术,有时难以准确区分脑内感染与坏死性胶质母细胞瘤(GBM)。
探讨 DTI 与 DSC-PWI 联合分析在鉴别脑内感染与坏死性 GBM 中的价值。
回顾性研究。
14 例脑内感染患者和 21 例坏死性 GBM 患者。
场强/序列:3T MRI、DTI、DSC-PWI。
计算平均弥散系数(MD)、各向异性分数(FA)、线性系数(CL)、平面各向异性(CP)和校正后漏出的脑血容量(CBV)的参数图,并与对比后 T1 加权和液体衰减反转恢复(FLAIR)图像配准。所有病变均被分割为中央核心区和强化区。分别测量每个区域的 MD、FA、CL、CP、相对 CBV(rCBV)和 rCBV 的前 90 百分位数(rCBV )的中位数。
采用 Mann-Whitney 检验比较脑内感染与坏死性 GBM 患者的两个区域的所有参数。采用 Logistic 回归分析获得鉴别这两种情况的最佳模型。
与坏死性 GBM 相比,脑内感染患者的中央核心区 MD(0.90×10 -3 ± 0.44×10 -3 mm/s 比 1.66×10 -3 ± 0.62×10 -3 mm/s,P=0.001)明显降低,FA(0.15 ± 0.06 比 0.09 ± 0.03,P<0.001)和 CP(0.07 ± 0.03 比 0.04 ± 0.02,P=0.009)明显升高。此外,与坏死性 GBM 相比,脑内感染患者的增强区 rCBV(1.91 ± 0.95 比 2.76 ± 1.24,P=0.031)和 rCBV (3.46 ± 1.41 比 5.89 ± 2.06,P=0.001)明显降低。中央核心区 FA 和增强区 rCBV 为鉴别脑内感染与坏死性 GBM 的最佳分类模型,其灵敏度为 91%,特异度为 93%。
DTI 和 DSC-PWI 的联合分析可能在鉴别脑内感染与坏死性 GBM 方面具有更好的性能。
1 技术功效:2 级 J. 磁共振成像 2019;49:184-194.