Suppr超能文献

通过使用卷积自动编码器从电子健康记录中提取可解释特征对糖尿病肾病进行风险预测

Risk Prediction of Diabetic Nephropathy via Interpretable Feature Extraction from EHR Using Convolutional Autoencoder.

作者信息

Katsuki Takayuki, Ono Masaki, Koseki Akira, Kudo Michiharu, Haida Kyoichi, Kuroda Jun, Makino Masaki, Yanagiya Ryosuke, Suzuki Atsushi

机构信息

IBM Research - Tokyo, Japan.

Business Process Planning Department, The Dai-ichi Life Insurance Company, Limited, Japan.

出版信息

Stud Health Technol Inform. 2018;247:106-110.

Abstract

This paper describes a technology for predicting the aggravation of diabetic nephropathy from electronic health record (EHR). For the prediction, we used features extracted from event sequence of lab tests in EHR with a stacked convolutional autoencoder which can extract both local and global temporal information. The extracted features can be interpreted as similarities to a small number of typical sequences of lab tests, that may help us to understand the disease courses and to provide detailed health guidance. In our experiments on real-world EHRs, we confirmed that our approach performed better than baseline methods and that the extracted features were promising for understanding the disease.

摘要

本文介绍了一种从电子健康记录(EHR)中预测糖尿病肾病病情加重的技术。为了进行预测,我们使用了通过堆叠卷积自动编码器从EHR中的实验室检查事件序列中提取的特征,该编码器可以提取局部和全局时间信息。提取的特征可以解释为与少量典型实验室检查序列的相似性,这可能有助于我们了解疾病进程并提供详细的健康指导。在对真实世界EHR的实验中,我们证实我们的方法比基线方法表现更好,并且提取的特征对于理解疾病很有前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验