Suppr超能文献

人工智能在肾小球疾病中的应用。

Artificial intelligence in glomerular diseases.

机构信息

Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy.

Department of Nephrology, University of Modena, Modena, Italy.

出版信息

Pediatr Nephrol. 2022 Nov;37(11):2533-2545. doi: 10.1007/s00467-021-05419-8. Epub 2022 Mar 10.

Abstract

In this narrative review, we focus on the application of artificial intelligence in the clinical history of patients with glomerular disease, digital pathology in kidney biopsy, renal ultrasonography imaging, and prediction of chronic kidney disease (CKD). With the development of natural language processing, the clinical history of a patient can be used to identify a computable phenotype. In kidney pathology, digital imaging has adopted innovative deep learning algorithms (DLAs) that can improve the predictive capability of the examined lesions. However, at this time, these applications can only be used in research because there is no recognized validation to replace the conventional diagnostic applications. Kidney ultrasonography, used in the clinical examination of patients, provides information about the progression of kidney damage. Machine learning algorithms (MLAs) with promising results for the early detection of CKD have been proposed, but, still, they are not solid enough to be incorporated into the clinical practice. A few tools for glomerulonephritis, based on MLAs, are available in clinical practice. They can be downloaded on computers and cellular phones but can only be applied to uniracial cohorts of patients. To improve their performance, it is necessary to organize large consortia with multiracial cohorts. Finally, in many studies MLA development has been carried out using retrospective cohorts. The performance of the models might differ in retrospective cohorts compared to real-world data. Therefore, the models should be validated in prospective external large cohorts.

摘要

在这篇叙述性综述中,我们重点关注人工智能在肾小球疾病患者临床病史、肾脏活检的数字病理学、肾脏超声成像以及慢性肾脏病 (CKD) 预测中的应用。随着自然语言处理的发展,患者的临床病史可用于识别可计算的表型。在肾脏病理学中,数字成像采用了创新的深度学习算法 (DLAs),可以提高检查病变的预测能力。然而,此时,这些应用只能在研究中使用,因为没有公认的验证方法可以替代传统的诊断应用。肾脏超声检查用于患者的临床检查,提供有关肾脏损伤进展的信息。已经提出了用于早期检测 CKD 的具有前景的机器学习算法 (MLAs),但它们仍然不够可靠,无法纳入临床实践。有一些基于 MLAs 的肾小球肾炎工具在临床实践中可用。它们可以下载到计算机和手机上,但只能应用于单一种族的患者队列。为了提高它们的性能,有必要组织具有多种族队列的大型联盟。最后,在许多研究中,MLA 的开发都是使用回顾性队列进行的。与真实世界的数据相比,模型在回顾性队列中的表现可能有所不同。因此,应在前瞻性外部大队列中验证这些模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验