Department of Dairy Science, University of Wisconsin, Madison 53706.
Department of Animal Sciences, University of Wisconsin, Madison 53706.
J Dairy Sci. 2018 Jul;101(7):5878-5889. doi: 10.3168/jds.2017-13997. Epub 2018 Apr 19.
Feed intake is one of the most important components of feed efficiency in dairy systems. However, it is a difficult trait to measure in commercial operations for individual cows. Milk spectrum from mid-infrared spectroscopy has been previously used to predict milk traits, and could be an alternative to predict dry matter intake (DMI). The objectives of this study were (1) to evaluate if milk spectra can improve DMI predictions based only on cow variables; (2) to compare artificial neural network (ANN) and partial least squares (PLS) predictions; and (3) to evaluate if wavelength (WL) selection through Bayesian network (BN) improves prediction quality. Milk samples (n = 1,279) from 308 mid-lactation dairy cows [127 ± 27 d in milk (DIM)] were collected between 2014 and 2016. For each milk spectra time point, DMI (kg/d), body weight (BW, kg), milk yield (MY, kg/d), fat (%), protein (%), lactose (%), and actual DIM were recorded. The DMI was predicted with ANN and PLS using different combinations of explanatory variables. Such combinations, called covariate sets, were as follows: set 1 (MY, BW, DIM, and 361 WL); set 2 [MY, BW, DIM, and 33 WL (WL selected by BN)]; set 3 (MY, BW, DIM, and fat, protein, and lactose concentrations); set 4 (MY, BW, DIM, 33 WL, fat, protein, and lactose); set 5 (MY, BW, DIM, 33 WL, and visit duration in the feed bunk); set 6 (MY, DIM, and 33 WL); set 7 (MY, BW, and DIM); set-WL (included 361 WL); and set-BN (included just 33 selected WL). All models (i.e., each combination of covariate set and fitting approach, ANN or PLS) were validated with an external data set. The use of ANN improved the performance of models 2, 5, 6, and BN. The use of BN combined with ANN yielded the highest accuracy and precision. The addition of individual WL compared with milk components (set 2 vs. set 3) did not improve prediction quality when using PLS. However, when ANN was employed, the model prediction with the inclusion of 33 WL was improved over the model containing only milk components (set 2 vs. set 3; concordance correlation coefficient = 0.80 vs. 0.72; coefficient of determination = 0.67 vs. 0.53; root mean square error of prediction 2.36 vs. 2.81 kg/d). The use of ANN and the inclusion of a behavior parameter, set 5, resulted in the best predictions compared with all other models (coefficient of determination = 0.70, concordance correlation coefficient = 0.83, root mean square error of prediction = 2.15 kg/d). The addition of milk spectra information to models containing cow variables improved the accuracy and precision of DMI predictions in lactating dairy cows when ANN was used. The use of BN to select more informative WL improved the model prediction when combined with cow variables, with further improvement when combined with ANN.
采食量是奶牛养殖系统中饲料效率最重要的组成部分之一。然而,对于个体奶牛来说,在商业运营中很难测量。中红外光谱法的牛奶光谱以前曾用于预测牛奶特性,也可以作为预测干物质采食量(DMI)的替代方法。本研究的目的是:(1)评估牛奶光谱是否可以提高仅基于奶牛变量的 DMI 预测;(2)比较人工神经网络(ANN)和偏最小二乘法(PLS)的预测;(3)评估通过贝叶斯网络(BN)选择波长(WL)是否可以提高预测质量。收集了 2014 年至 2016 年间 308 头泌乳中期奶牛(泌乳期 127 ± 27 天)的 1279 份牛奶样本。对于每个牛奶光谱时间点,记录了干物质采食量(kg/d)、体重(BW,kg)、产奶量(MY,kg/d)、脂肪(%)、蛋白质(%)、乳糖(%)和实际泌乳天数。使用 ANN 和 PLS 利用不同的解释变量组合来预测 DMI。这些组合称为协变量集,如下所示:集 1(MY、BW、DIM 和 361 WL);集 2[MY、BW、DIM 和 33 WL(由 BN 选择)];集 3(MY、BW、DIM 和脂肪、蛋白质和乳糖浓度);集 4(MY、BW、DIM、33 WL、脂肪、蛋白质和乳糖);集 5(MY、BW、DIM、33 WL 和饲料槽中的访问持续时间);集 6(MY、DIM 和 33 WL);集 7(MY、BW 和 DIM);集-WL(包括 361 WL);和集-BN(仅包括 33 个选定的 WL)。所有模型(即,每个协变量集和拟合方法的组合,ANN 或 PLS)均使用外部数据集进行验证。ANN 的使用提高了模型 2、5、6 和 BN 的性能。ANN 和 BN 的结合产生了最高的准确性和精度。与牛奶成分相比(集 2 与集 3),单独使用 WL 并不能提高 PLS 的预测质量。然而,当使用 ANN 时,包含 33 WL 的模型预测优于仅包含牛奶成分的模型(集 2 与集 3;一致性相关系数=0.80 与 0.72;决定系数=0.67 与 0.53;预测 2.36 与 2.81 kg/d 的均方根误差)。与所有其他模型相比,使用 ANN 和包含行为参数(集 5)的模型产生了最佳预测(决定系数=0.70,一致性相关系数=0.83,预测 2.15 kg/d 的均方根误差)。在使用 ANN 时,将牛奶光谱信息添加到包含奶牛变量的模型中,可以提高泌乳奶牛 DMI 预测的准确性和精度。使用 BN 选择更具信息量的 WL 可以提高模型预测的准确性,当与奶牛变量结合使用时,进一步提高,当与 ANN 结合使用时,进一步提高。