IEEE Trans Biomed Eng. 2018 May;65(5):1151-1165. doi: 10.1109/TBME.2017.2787025.
In this paper, we propose a robust, efficient, and automatic reconnection algorithm for bridging interrupted curvilinear skeletons in ophthalmologic images.
This method employs the contour completion process, i.e., mathematical modeling of the direction process in the roto-translation group to achieve line propagation/completion. The completion process can be used to reconstruct interrupted curves by considering their local consistency. An explicit scheme with finite-difference approximation is used to construct the three-dimensional (3-D) completion kernel, where we choose the Gamma distribution for time integration. To process structures in , the orientation score framework is exploited to lift the 2-D curvilinear segments into the 3-D space. The propagation and reconnection of interrupted segments are achieved by convolving the completion kernel with orientation scores via iterative group convolutions. To overcome the problem of incorrect skeletonization of 2-D structures at junctions, a 3-D segment-wise thinning technique is proposed to process each segment separately in orientation scores.
Validations on 4 datasets with different image modalities show that our method achieves an average success rate of in reconnecting gaps of sizes from to , including challenging junction structures.
The reconnection approach can be a useful and reliable technique for bridging complex curvilinear interruptions.
The presented method is a critical work to obtain more complete curvilinear structures in ophthalmologic images. It provides better topological and geometric connectivities for further analysis.
本文提出了一种稳健、高效、自动的眼科图像中断曲线骨架重连算法。
该方法采用轮廓完成过程,即旋转变换群中方向过程的数学建模,实现线的传播/完成。完成过程可通过考虑局部一致性来重建中断曲线。采用有限差分逼近的显式方案来构建三维(3-D)完成核,其中我们选择伽马分布进行时间积分。为了处理 中的结构,利用方向得分框架将 2-D 曲线段提升到 3-D 空间。通过迭代群卷积,用完成核与方向得分进行卷积来实现中断段的传播和重连。为了克服 2-D 结构在连接处的不正确骨架化问题,提出了一种 3-D 分段细化技术,以便在方向得分中分别处理每个段。
在具有不同成像模态的 4 个数据集上的验证表明,我们的方法在连接大小从 到 的间隙时平均成功率达到 ,包括具有挑战性的连接结构。
该重连方法可作为一种有用且可靠的技术,用于桥接复杂的曲线中断。
所提出的方法是在眼科图像中获得更完整的曲线结构的关键工作。它为进一步的分析提供了更好的拓扑和几何连接性。