Suppr超能文献

突触纳米模块是棘突突触组织和可塑性的基础。

Synaptic nanomodules underlie the organization and plasticity of spine synapses.

作者信息

Hruska Martin, Henderson Nathan, Le Marchand Sylvain J, Jafri Haani, Dalva Matthew B

机构信息

Department of Neuroscience, The Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.

Bio-Imaging Center, University of Delaware, Newark, DE, USA.

出版信息

Nat Neurosci. 2018 May;21(5):671-682. doi: 10.1038/s41593-018-0138-9. Epub 2018 Apr 23.

Abstract

Experience results in long-lasting changes in dendritic spine size, yet how the molecular architecture of the synapse responds to plasticity remains poorly understood. Here a combined approach of multicolor stimulated emission depletion microscopy (STED) and confocal imaging in rat and mouse demonstrates that structural plasticity is linked to the addition of unitary synaptic nanomodules to spines. Spine synapses in vivo and in vitro contain discrete and aligned subdiffraction modules of pre- and postsynaptic proteins whose number scales linearly with spine size. Live-cell time-lapse super-resolution imaging reveals that NMDA receptor-dependent increases in spine size are accompanied both by enhanced mobility of pre- and postsynaptic modules that remain aligned with each other and by a coordinated increase in the number of nanomodules. These findings suggest a simplified model for experience-dependent structural plasticity relying on an unexpectedly modular nanomolecular architecture of synaptic proteins.

摘要

经验会导致树突棘大小发生持久变化,但突触的分子结构如何响应可塑性仍知之甚少。在这里,通过在大鼠和小鼠中结合多色受激发射损耗显微镜(STED)和共聚焦成像的方法表明,结构可塑性与向树突棘添加单一突触纳米模块有关。体内和体外的树突棘突触包含离散且排列整齐的突触前和突触后蛋白的亚衍射模块,其数量与树突棘大小呈线性比例。活细胞延时超分辨率成像显示,NMDA受体依赖性的树突棘大小增加伴随着突触前和突触后模块的流动性增强,且它们彼此保持对齐,同时纳米模块数量也协同增加。这些发现提出了一个依赖于突触蛋白意外模块化纳米分子结构的经验依赖性结构可塑性简化模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24d0/5920789/9252d69b6cff/nihms950681f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验