Suppr超能文献

一种用于生物启发式视觉运动估计的紧凑型超大规模集成电路系统。

A Compact VLSI System for Bio-Inspired Visual Motion Estimation.

作者信息

Shi Cong, Luo Gang

机构信息

Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114 USA.

出版信息

IEEE Trans Circuits Syst Video Technol. 2018 Apr;28(4):1021-1036. doi: 10.1109/TCSVT.2016.2630848. Epub 2016 Nov 18.

Abstract

This paper proposes a bio-inspired visual motion estimation algorithm based on motion energy, along with its compact very-large-scale integration (VLSI) architecture using low-cost embedded systems. The algorithm mimics motion perception functions of retina, V1, and MT neurons in a primate visual system. It involves operations of ternary edge extraction, spatiotemporal filtering, motion energy extraction, and velocity integration. Moreover, we propose the concept of confidence map to indicate the reliability of estimation results on each probing location. Our algorithm involves only additions and multiplications during runtime, which is suitable for low-cost hardware implementation. The proposed VLSI architecture employs multiple (frame, pixel, and operation) levels of pipeline and massively parallel processing arrays to boost the system performance. The array unit circuits are optimized to minimize hardware resource consumption. We have prototyped the proposed architecture on a low-cost field-programmable gate array platform (Zynq 7020) running at 53-MHz clock frequency. It achieved 30-frame/s real-time performance for velocity estimation on 160 × 120 probing locations. A comprehensive evaluation experiment showed that the estimated velocity by our prototype has relatively small errors (average endpoint error < 0.5 pixel and angular error < 10°) for most motion cases.

摘要

本文提出了一种基于运动能量的仿生视觉运动估计算法,以及使用低成本嵌入式系统的紧凑型超大规模集成(VLSI)架构。该算法模仿了灵长类视觉系统中视网膜、V1和MT神经元的运动感知功能。它涉及三元边缘提取、时空滤波、运动能量提取和速度积分等操作。此外,我们提出了置信度图的概念,以指示每个探测位置上估计结果的可靠性。我们的算法在运行时仅涉及加法和乘法,适用于低成本硬件实现。所提出的VLSI架构采用了多个(帧、像素和操作)级别的流水线和大规模并行处理阵列来提高系统性能。对阵列单元电路进行了优化,以最小化硬件资源消耗。我们已在运行于53MHz时钟频率的低成本现场可编程门阵列平台(Zynq 7020)上对所提出的架构进行了原型设计。它在160×120个探测位置上实现了30帧/秒的速度估计实时性能。一项综合评估实验表明,对于大多数运动情况,我们原型估计的速度具有相对较小的误差(平均端点误差<0.5像素,角度误差<10°)。

相似文献

1
A Compact VLSI System for Bio-Inspired Visual Motion Estimation.一种用于生物启发式视觉运动估计的紧凑型超大规模集成电路系统。
IEEE Trans Circuits Syst Video Technol. 2018 Apr;28(4):1021-1036. doi: 10.1109/TCSVT.2016.2630848. Epub 2016 Nov 18.
7
Motion estimation: A biologically inspired model.运动估计:一种受生物启发的模型。
Vision Res. 2018 Sep;150:44-53. doi: 10.1016/j.visres.2018.07.003. Epub 2018 Aug 23.

本文引用的文献

8
Seeing things in motion: models, circuits, and mechanisms.观察运动中的事物:模型、回路和机制。
Neuron. 2011 Sep 22;71(6):974-94. doi: 10.1016/j.neuron.2011.08.031. Epub 2011 Sep 21.
9
Stochastic uncertainty models for the luminance consistency assumption.用于亮度一致性假设的随机不确定性模型。
IEEE Trans Image Process. 2012 Feb;21(2):481-93. doi: 10.1109/TIP.2011.2162742. Epub 2011 Jul 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验