Department of Medical Information, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
BMC Med Inform Decis Mak. 2020 Jul 9;20(Suppl 3):121. doi: 10.1186/s12911-020-1113-4.
Blood cultures are often performed to detect patients who has a serious illness without infections and patients with bloodstream infections. Early positive blood culture prediction is important, as bloodstream infections may cause inflammation of the body, even organ failure or death. However, existing work mainly adopts statistical models with laboratory indicators, and fails to make full use of textual description information from EHRs.
We study the problem of positive blood culture prediction by using neural network model. Specifically, we first construct dataset from raw EHRs. Then we propose a hybrid neural network which incorporates attention based Bi-directional Long Short-Term Memory and Autoencoder networks to fully capture the information in EHRs.
In order to evaluate the proposed method, we constructe a dataset which consists of totally 5963 patients who had one or more blood cultures tests during hospitalization. Experimental results show that the proposed neural model gets 91.23% F-measure for this task.
The comparison results of different models demonstrated the effectiveness of our model. The proposed model outperformed traditional statistical models.
血液培养常被用于检测无感染但患有血流感染的重症患者。早期阳性血培养预测非常重要,因为血流感染可能导致全身炎症,甚至器官衰竭或死亡。然而,现有工作主要采用基于实验室指标的统计模型,未能充分利用电子病历中的文本描述信息。
我们通过使用神经网络模型来研究阳性血培养预测问题。具体来说,我们首先从原始电子病历中构建数据集。然后,我们提出了一种混合神经网络,它结合了基于注意力的双向长短时记忆网络和自动编码器网络,以充分捕获电子病历中的信息。
为了评估所提出的方法,我们构建了一个包含 5963 名患者的数据集,这些患者在住院期间进行了一次或多次血培养试验。实验结果表明,所提出的神经网络模型在该任务上的 F1 得分为 91.23%。
不同模型的比较结果表明了我们模型的有效性。所提出的模型优于传统的统计模型。