Suppr超能文献

基于电子健康记录的混合神经网络模型预测血培养结果。

Prediction of blood culture outcome using hybrid neural network model based on electronic health records.

机构信息

Department of Medical Information, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

出版信息

BMC Med Inform Decis Mak. 2020 Jul 9;20(Suppl 3):121. doi: 10.1186/s12911-020-1113-4.

Abstract

BACKGROUND

Blood cultures are often performed to detect patients who has a serious illness without infections and patients with bloodstream infections. Early positive blood culture prediction is important, as bloodstream infections may cause inflammation of the body, even organ failure or death. However, existing work mainly adopts statistical models with laboratory indicators, and fails to make full use of textual description information from EHRs.

METHODS

We study the problem of positive blood culture prediction by using neural network model. Specifically, we first construct dataset from raw EHRs. Then we propose a hybrid neural network which incorporates attention based Bi-directional Long Short-Term Memory and Autoencoder networks to fully capture the information in EHRs.

RESULTS

In order to evaluate the proposed method, we constructe a dataset which consists of totally 5963 patients who had one or more blood cultures tests during hospitalization. Experimental results show that the proposed neural model gets 91.23% F-measure for this task.

CONCLUSIONS

The comparison results of different models demonstrated the effectiveness of our model. The proposed model outperformed traditional statistical models.

摘要

背景

血液培养常被用于检测无感染但患有血流感染的重症患者。早期阳性血培养预测非常重要,因为血流感染可能导致全身炎症,甚至器官衰竭或死亡。然而,现有工作主要采用基于实验室指标的统计模型,未能充分利用电子病历中的文本描述信息。

方法

我们通过使用神经网络模型来研究阳性血培养预测问题。具体来说,我们首先从原始电子病历中构建数据集。然后,我们提出了一种混合神经网络,它结合了基于注意力的双向长短时记忆网络和自动编码器网络,以充分捕获电子病历中的信息。

结果

为了评估所提出的方法,我们构建了一个包含 5963 名患者的数据集,这些患者在住院期间进行了一次或多次血培养试验。实验结果表明,所提出的神经网络模型在该任务上的 F1 得分为 91.23%。

结论

不同模型的比较结果表明了我们模型的有效性。所提出的模型优于传统的统计模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验