Suppr超能文献

最小作用量路径理论揭示了随机跃迁出振荡态的细节。

Minimum Action Path Theory Reveals the Details of Stochastic Transitions Out of Oscillatory States.

机构信息

Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193 Bellaterra (Barcelona), Spain and Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.

Department of Mathematics, University College London, Gower Street, London WC1E 6BT, United Kingdom.

出版信息

Phys Rev Lett. 2018 Mar 23;120(12):128102. doi: 10.1103/PhysRevLett.120.128102.

Abstract

Cell state determination is the outcome of intrinsically stochastic biochemical reactions. Transitions between such states are studied as noise-driven escape problems in the chemical species space. Escape can occur via multiple possible multidimensional paths, with probabilities depending nonlocally on the noise. Here we characterize the escape from an oscillatory biochemical state by minimizing the Freidlin-Wentzell action, deriving from it the stochastic spiral exit path from the limit cycle. We also use the minimized action to infer the escape time probability density function.

摘要

细胞状态的确定是内在随机生化反应的结果。这些状态之间的转变被研究为化学物质空间中受噪声驱动的逃逸问题。逃逸可以通过多条可能的多维路径发生,其概率取决于噪声的非局部性。在这里,我们通过最小化弗莱林-文策尔作用来描述从振荡生化状态的逃逸,从其中推导出从极限环出来的随机螺旋逃逸路径。我们还使用最小作用来推断逃逸时间概率密度函数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验