Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Phys Rev Lett. 2012 Feb 3;108(5):058102. doi: 10.1103/PhysRevLett.108.058102. Epub 2012 Jan 30.
In biochemical networks, identifying key proteins and protein-protein reactions that regulate fluctuation-driven transitions leading to pathological cellular function is an important challenge. Using large deviation theory, we develop a semianalytical method to determine how changes in protein expression and rate parameters of protein-protein reactions influence the rate of such transitions. Our formulas agree well with computationally costly direct simulations and are consistent with experiments. Our approach reveals qualitative features of key reactions that regulate stochastic transitions.
在生化网络中,确定调节波动驱动的转变、导致病理性细胞功能的关键蛋白质和蛋白质-蛋白质反应是一个重要的挑战。我们使用大偏差理论,开发了一种半解析方法来确定蛋白质表达的变化和蛋白质-蛋白质反应的速率参数如何影响这种转变的速率。我们的公式与计算成本高的直接模拟吻合得很好,并且与实验一致。我们的方法揭示了调节随机转变的关键反应的定性特征。