Department of Pharmaceutical Biochemistry, Medical University of Białystok.
Institute of Chemistry, University of Białystok, Białystok, Poland.
Int J Nanomedicine. 2018 Apr 12;13:2279-2294. doi: 10.2147/IJN.S158393. eCollection 2018.
Recently, the focus of oncological research has been on the optimization of therapeutic strategies targeted at malignant diseases. Nanomedicine utilizing silicon dioxide nanoparticles (SiNPs) is one such strategy and is rapidly developing as a promising tool for cancer diagnosis, imaging, and treatment. Nevertheless, little is known about the mechanisms of action of SiNPs in brain tumors.
Here, we explored the effects of 5-15 nm SiNPs in the human glioblastoma cell line LN229. In this respect, MTT assays, microscopic observations, flow cytometry analyses, and luminescent assays were performed. Moreover, RT-qPCR and Western blot analyses were done to determine gene and protein expressions.
We demonstrated that SiNPs triggered evident cytotoxicity, with microscopic observations of the nuclei, annexin V-fluorescein isothiocyanate/propidium iodide staining, and elevated caspase 3/7 activity, suggesting that SiNPs predominantly induced apoptotic death in LN229 cells. We further showed the occurrence of oxidative stress induced by enhanced reactive oxygen-species generation. This effect was followed by deregulated expression of genes encoding the antioxidant enzymes SOD1, SOD2, and CAT, and impaired mitochondria function. SiNP- induced mitochondrial dysfunction was characterized by membrane-potential collapse, ATP depletion, elevated expression of , , and with simultaneous downregulation of , and activation of caspase 9. Moreover, RT-qPCR and Western blot analyses demonstrated increased levels of the endoplasmic reticulum stress markers GRP78, GRP94, and DDIT3, as well as strongly increased expressions of the and genes, suggesting activation of endoplasmic reticulum stress and a proinflammatory response.
Altogether, our data indicate that in LN229 cells, SiNPs evoke cell death via activation of the intrinsic apoptosis pathway and suggest that other aspects of cellular function may also be affected. As such, SiNPs represent a potentially promising agent for facilitating further progress in brain cancer therapy. However, further exploration of SiNP long-term toxicity and molecular effects is necessary prior to their widespread application.
近年来,肿瘤学研究的重点一直是优化针对恶性疾病的治疗策略。利用二氧化硅纳米粒子(SiNPs)的纳米医学就是这样一种策略,并且作为癌症诊断、成像和治疗的有前途的工具正在迅速发展。然而,对于 SiNPs 在脑肿瘤中的作用机制知之甚少。
在这里,我们研究了 5-15nm 的 SiNPs 在人类神经胶质瘤细胞系 LN229 中的作用。为此,进行了 MTT 测定、显微镜观察、流式细胞术分析和发光测定。此外,还进行了 RT-qPCR 和 Western blot 分析以确定基因和蛋白表达。
我们证明 SiNPs 引发了明显的细胞毒性,通过细胞核的显微镜观察、 Annexin V-异硫氰酸荧光素/碘化丙啶染色和升高的 caspase 3/7 活性表明 SiNPs 主要诱导 LN229 细胞发生凋亡性死亡。我们进一步表明,由于活性氧物质生成增加而导致氧化应激的发生。这种作用伴随着抗氧化酶 SOD1、SOD2 和 CAT 的基因表达下调以及线粒体功能受损。SiNP 诱导的线粒体功能障碍的特征是膜电位崩溃、ATP 耗竭、上调 、 和 ,同时下调 和 caspase 9 的激活。此外,RT-qPCR 和 Western blot 分析表明内质网应激标志物 GRP78、GRP94 和 DDIT3 的水平升高,以及 和 基因的强烈表达增加,表明内质网应激和炎症反应的激活。
总的来说,我们的数据表明,在 LN229 细胞中,SiNPs 通过激活内在凋亡途径引发细胞死亡,并表明细胞功能的其他方面也可能受到影响。因此,SiNPs 代表了一种有前途的促进脑癌治疗进一步发展的药物。然而,在广泛应用之前,需要进一步探索 SiNP 的长期毒性和分子效应。