Suppr超能文献

组氨酸和嘌呤中咪唑部分生物合成的进化趋同。

Evolutionary convergence in the biosyntheses of the imidazole moieties of histidine and purines.

机构信息

Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. Universitaria, Cd. de México, México.

Miembro de El Colegio Nacional, Centro, Cd. de México, México.

出版信息

PLoS One. 2018 Apr 26;13(4):e0196349. doi: 10.1371/journal.pone.0196349. eCollection 2018.

Abstract

BACKGROUND

The imidazole group is an ubiquitous chemical motif present in several key types of biomolecules. It is a structural moiety of purines, and plays a central role in biological catalysis as part of the side-chain of histidine, the amino acid most frequently found in the catalytic site of enzymes. Histidine biosynthesis starts with both ATP and the pentose phosphoribosyl pyrophosphate (PRPP), which is also the precursor for the de novo synthesis of purines. These two anabolic pathways are also connected by the imidazole intermediate 5-aminoimidazole-4-carboxamide ribotide (AICAR), which is synthesized in both routes but used only in purine biosynthesis. Rather surprisingly, the imidazole moieties of histidine and purines are synthesized by different, non-homologous enzymes. As discussed here, this phenomenon can be understood as a case of functional molecular convergence.

RESULTS

In this work, we analyze these polyphyletic processes and argue that the independent origin of the corresponding enzymes is best explained by the differences in the function of each of the molecules to which the imidazole moiety is attached. Since the imidazole present in histidine is a catalytic moiety, its chemical arrangement allows it to act as an acid or a base. On the contrary, the de novo biosynthesis of purines starts with an activated ribose and all the successive intermediates are ribotides, with the key β-glycosidic bondage joining the ribose and the imidazole moiety. This prevents purine ribonucleotides to exhibit any imidazole-dependent catalytic activity, and may have been the critical trait for the evolution of two separate imidazole-synthesizing-enzymes. We also suggest that, in evolutionary terms, the biosynthesis of purines predated that of histidine.

CONCLUSIONS

As reviewed here, other biosynthetic routes for imidazole molecules are also found in extant metabolism, including the autocatalytic cyclization that occurs during the formation of creatinine from creatine phosphate, as well as the internal cyclization of the Ala-Ser-Gly motif of some members of the ammonia-lyase and aminomutase families, that lead to the MIO cofactor. The diversity of imidazole-synthesizing pathways highlights the biological significance of this key chemical group, whose biosyntheses evolved independently several times.

摘要

背景

咪唑基是存在于几种关键类型生物分子中的普遍化学基序。它是嘌呤的结构部分,作为组氨酸侧链的一部分,在生物催化中起着核心作用,组氨酸是酶催化位点中最常见的氨基酸。组氨酸生物合成始于 ATP 和戊糖磷酸核糖焦磷酸(PRPP),PRPP 也是嘌呤从头合成的前体。这两条合成途径通过咪唑中间产物 5-氨基咪唑-4-羧酰胺核苷酸(AICAR)连接,该中间产物在两条途径中都有合成,但仅用于嘌呤生物合成。相当令人惊讶的是,组氨酸和嘌呤的咪唑基由不同的、非同源酶合成。正如这里讨论的那样,这种现象可以被理解为功能分子趋同的一个例子。

结果

在这项工作中,我们分析了这些多系发生过程,并认为相应酶的独立起源最好通过每个分子的功能差异来解释,而咪唑基附着在这些分子上。由于组氨酸中的咪唑基是催化部分,其化学排列使其可以充当酸或碱。相反,嘌呤的从头生物合成始于活化的核糖,并且所有后续的中间体都是核苷酸,将核糖和咪唑基连接在一起的关键β-糖苷键。这阻止了嘌呤核苷酸表现出任何依赖咪唑的催化活性,这可能是进化出两种独立的咪唑合成酶的关键特征。我们还提出,从进化的角度来看,嘌呤的生物合成早于组氨酸的生物合成。

结论

正如这里综述的那样,其他咪唑分子的生物合成途径也存在于现存的代谢中,包括肌酸磷酸从肌酸形成过程中的自动催化环化,以及氨裂解酶和氨基突变酶家族某些成员的 Ala-Ser-Gly 基序的内部环化,这导致了 MIO 辅因子。咪唑合成途径的多样性突出了这个关键化学基团的生物学意义,其生物合成已经独立进化了多次。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd3d/5919458/4d8d64563f77/pone.0196349.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验