Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.
Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
Cell Calcium. 2018 Jul;73:88-94. doi: 10.1016/j.ceca.2018.04.006. Epub 2018 Apr 18.
Stromal interaction molecule (STIM)-1 and -2 are multi-domain, single-pass transmembrane proteins involved in sensing changes in compartmentalized calcium (Ca) levels and transducing this cellular signal to Orai1 channel proteins. Our understanding of the molecular mechanisms underlying STIM signaling has been dramatically improved through available X-ray crystal and solution NMR structures. This high-resolution structural data has revealed that intricate intramolecular and intermolecular protein-protein interactions are involved in converting STIMs from the quiescent to activation-competent states. This review article summarizes the current high resolution structural data on specific EF-hand, sterile α motif and coiled-coil interactions which drive STIM function in the activation of Orai1 channels. Further, the work discusses the effects of post-translational modifications on the structure and function of STIMs. Future structural studies on larger STIM:Orai complexes will be critical to fully defining the molecular bases for STIM function and how post-translational modifications influence these mechanisms.
基质相互作用分子(STIM)-1 和 -2 是多结构域、单次跨膜蛋白,参与感应分隔钙(Ca)水平的变化,并将此细胞信号转导至 Orai1 通道蛋白。通过现有的 X 射线晶体和溶液 NMR 结构,我们对 STIM 信号转导的分子机制的理解有了显著提高。这些高分辨率结构数据表明,复杂的分子内和分子间蛋白质-蛋白质相互作用参与将 STIM 从静止状态转变为激活状态。本文综述了当前关于特定 EF 手型、无菌 α 基序和卷曲螺旋相互作用的高分辨率结构数据,这些相互作用驱动 STIM 在激活 Orai1 通道中的功能。此外,该工作还讨论了翻译后修饰对 STIM 结构和功能的影响。对更大的 STIM:Orai 复合物的未来结构研究对于充分定义 STIM 功能的分子基础以及翻译后修饰如何影响这些机制至关重要。