Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, P. R. China.
Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America.
PLoS Biol. 2018 Nov 16;16(11):e2006898. doi: 10.1371/journal.pbio.2006898. eCollection 2018 Nov.
The endoplasmic reticulum (ER) Ca2+ sensors stromal interaction molecule 1 (STIM1) and STIM2, which connect ER Ca2+ depletion with extracellular Ca2+ influx, are crucial for the maintenance of Ca2+ homeostasis in mammalian cells. Despite the recent progress in unraveling the role of STIM2 in Ca2+ signaling, the mechanistic underpinnings of its activation remain underexplored. We use an engineering approach to direct ER-resident STIMs to the plasma membrane (PM) while maintaining their correct membrane topology, as well as Förster resonance energy transfer (FRET) sensors that enabled in cellulo real-time monitoring of STIM activities. This allowed us to determine the calcium affinities of STIM1 and STIM2 both in cellulo and in situ, explaining the current discrepancies in the literature. We also identified the key structural determinants, especially the corresponding G residue in STIM1, which define the distinct activation dynamics of STIM2. The chimeric E470G mutation could switch STIM2 from a slow and weak Orai channel activator into a fast and potent one like STIM1 and vice versa. The systemic dissection of STIM2 activation by protein engineering sets the stage for the elucidation of the regulation and function of STIM2-mediated signaling in mammals.
内质网 (ER) Ca2+ 传感器基质相互作用分子 1 (STIM1) 和 STIM2 将 ER Ca2+ 耗竭与细胞外 Ca2+ 内流连接起来,对于维持哺乳动物细胞的 Ca2+ 稳态至关重要。尽管最近在揭示 STIM2 在 Ca2+ 信号转导中的作用方面取得了进展,但它的激活机制仍未得到充分探索。我们使用工程方法将 ER 驻留的 STIM 引导到质膜 (PM) 上,同时保持其正确的膜拓扑结构,以及 Förster 共振能量转移 (FRET) 传感器,使我们能够在细胞内实时监测 STIM 活性。这使我们能够确定 STIM1 和 STIM2 的钙亲和力,无论是在细胞内还是在原位,从而解释了文献中的当前差异。我们还确定了关键的结构决定因素,特别是 STIM1 中的相应 G 残基,这决定了 STIM2 的独特激活动力学。嵌合 E470G 突变可以将 STIM2 从一种缓慢而弱的 Orai 通道激活剂转变为一种像 STIM1 一样快速而有效的激活剂,反之亦然。通过蛋白质工程对 STIM2 激活的系统剖析为阐明哺乳动物中 STIM2 介导的信号转导的调节和功能奠定了基础。