Department of Electronic & Tele-communication Engineering, Veer Surendra Sai University of Technology, Burla, 768018, Odisha, India.
J Digit Imaging. 2018 Dec;31(6):857-868. doi: 10.1007/s10278-018-0059-x.
Pathological disorders may happen due to small changes in retinal blood vessels which may later turn into blindness. Hence, the accurate segmentation of blood vessels is becoming a challenging task for pathological analysis. This paper offers an unsupervised recursive method for extraction of blood vessels from ophthalmoscope images. First, a vessel-enhanced image is generated with the help of gamma correction and contrast-limited adaptive histogram equalization (CLAHE). Next, the vessels are extracted iteratively by applying an adaptive thresholding technique. At last, a final vessel segmented image is produced by applying a morphological cleaning operation. Evaluations are accompanied on the publicly available digital retinal images for vessel extraction (DRIVE) and Child Heart And Health Study in England (CHASE_DB1) databases using nine different measurements. The proposed method achieves average accuracies of 0.957 and 0.952 on DRIVE and CHASE_DB1 databases respectively.
病理性障碍可能是由于视网膜血管的微小变化引起的,这些变化可能会导致失明。因此,准确地对血管进行分割对于病理分析来说是一项极具挑战性的任务。本文提出了一种从眼底图像中提取血管的无监督递归方法。首先,利用伽马校正和对比度受限自适应直方图均衡化(CLAHE)生成血管增强图像。然后,通过应用自适应阈值技术迭代地提取血管。最后,通过应用形态学清洗操作生成最终的血管分割图像。使用九种不同的测量方法,在公共眼底血管图像数据库(DRIVE)和英国儿童心脏与健康研究数据库(CHASE_DB1)上进行了血管提取评估。该方法在 DRIVE 和 CHASE_DB1 数据库上的平均准确率分别为 0.957 和 0.952。