Furuta Akihiro, Onishi Hideo, Amijima Hizuru
Department of Radiological Technology, Hiroshima Citizens Asa Hospital, 1-1, Kabeminami, Asakita-ku, Hiroshima, Hiroshima, 731-0293, Japan.
Program in Health and Welfare, Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, 1-1, Gakuenmachi, Mihara, Hiroshima, 723-0053, Japan.
Radiol Phys Technol. 2018 Jun;11(2):219-227. doi: 10.1007/s12194-018-0459-0. Epub 2018 Apr 26.
This study aimed to evaluate the effect of ventricular enlargement on the specific binding ratio (SBR) and to validate the cerebrospinal fluid (CSF)-Mask algorithm for quantitative SBR assessment of I-FP-CIT single-photon emission computed tomography (SPECT) images with the use of a 3D-striatum digital brain (SDB) phantom. Ventricular enlargement was simulated by three-dimensional extensions in a 3D-SDB phantom comprising segments representing the striatum, ventricle, brain parenchyma, and skull bone. The Evans Index (EI) was measured in 3D-SDB phantom images of an enlarged ventricle. Projection data sets were generated from the 3D-SDB phantoms with blurring, scatter, and attenuation. Images were reconstructed using the ordered subset expectation maximization (OSEM) algorithm and corrected for attenuation, scatter, and resolution recovery. We bundled DaTView (Southampton method) with the CSF-Mask processing software for SBR. We assessed SBR with the use of various coefficients (f factor) of the CSF-Mask. Specific binding ratios of 1, 2, 3, 4, and 5 corresponded to SDB phantom simulations with true values. Measured SBRs > 50% that were underestimated with EI increased compared with the true SBR and this trend was outstanding at low SBR. The CSF-Mask improved 20% underestimates and brought the measured SBR closer to the true values at an f factor of 1.0 despite an increase in EI. We connected the linear regression function (y = - 3.53x + 1.95; r = 0.95) with the EI and f factor using root-mean-square error. Processing with CSF-Mask generates accurate quantitative SBR from dopamine transporter SPECT images of patients with ventricular enlargement.
本研究旨在评估心室扩大对特异性结合率(SBR)的影响,并使用三维纹状体数字脑(SDB)体模验证脑脊液(CSF)-Mask算法在I-FP-CIT单光子发射计算机断层扫描(SPECT)图像定量SBR评估中的应用。通过在包含代表纹状体、脑室、脑实质和颅骨段的三维SDB体模中进行三维扩展来模拟心室扩大。在扩大心室的三维SDB体模图像中测量埃文斯指数(EI)。从具有模糊、散射和衰减的三维SDB体模生成投影数据集。使用有序子集期望最大化(OSEM)算法重建图像,并对衰减、散射和分辨率恢复进行校正。我们将DaTView(南安普顿方法)与用于SBR的CSF-Mask处理软件捆绑在一起。我们使用CSF-Mask的各种系数(f因子)评估SBR。1、2、3、4和5的特异性结合率对应于具有真实值的SDB体模模拟。与真实SBR相比,EI低估超过50%的测量SBR有所增加,且这种趋势在低SBR时尤为突出。尽管EI增加,但CSF-Mask在f因子为1.0时改善了20%的低估,并使测量的SBR更接近真实值。我们使用均方根误差将线性回归函数(y = - 3.53x + 1.95;r = 0.95)与EI和f因子联系起来。使用CSF-Mask处理可从心室扩大患者的多巴胺转运体SPECT图像中生成准确的定量SBR。