Iwabuchi Yu, Nakahara Tadaki, Kameyama Masashi, Matsusaka Yohji, Minami Yasuhiro, Ito Daisuke, Tabuchi Hajime, Yamada Yoshitake, Jinzaki Masahiro
Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan.
Department of Diagnostic Radiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan.
EJNMMI Res. 2019 Sep 3;9(1):85. doi: 10.1186/s13550-019-0558-x.
A cerebrospinal fluid (CSF)-mask algorithm has been developed to reduce the adverse influence of CSF-low-counts on the diagnostic utility of the specific binding ratio (SBR) index calculated with Southampton method. We assessed the effect of the CSF-mask algorithm on the diagnostic performance of the SBR index for parkinsonian syndromes (PS), including Parkinson's disease, and the influence of cerebral ventricle dilatation on the CSF-mask algorithm.
We enrolled 163 and 158 patients with and without PS, respectively. Both the conventional SBR (non-CSF-mask) and SBR corrected with the CSF-mask algorithm (CSF-mask) were calculated from I-Ioflupane single-photon emission computed tomography (SPECT) images of these patients. We compared the diagnostic performance of the corresponding indices and evaluated whether the effect of the CSF-mask algorithm varied according to the extent of ventricle dilatation, as assessed with the Evans index (EI). A receiver-operating characteristics (ROC) analysis was used for statistical analyses.
ROC analyses demonstrated that the CSF-mask algorithm performed better than the non-CSF-mask (no correction, area under the curve [AUC] = 0.917 [95% confidence interval (CI) 0.887-0.947] vs. 0.895 [95% CI 0.861-0.929], p < 0.001; attenuation correction, AUC = 0.930 [95% CI 0.902-0.957] vs. 0.903 [95% CI 0.870-0.936], p < 0.001). When not corrected for attenuation, no significant difference in the AUC was observed in the low EI group between the non-CSF-mask and CSF-mask algorithms (0.927 [95% CI 0.877-0.978] vs. 0.942 [95% CI 0.898-0.986], p = 0.11); in the middle and high EI groups, the CSF-mask algorithm performed better than the non-CSF-mask algorithm (middle EI group, AUC = 0.894 [95% CI 0.825-0.963] vs. 0.872 [95% CI 0.798-0.947], p < 0.05; high EI group, AUC = 0.931 [95% CI 0.883-0.978] vs. 0.900 [95% CI 0.840-0.961], p < 0.01). When corrected for attenuation, significant differences in the AUC were observed in all three EI groups (low EI group, AUC = 0.961 [95% CI 0.924-0.998] vs. 0.942 [95% CI 0.895-0.988], p < 0.05; middle EI group, AUC = 0.905 [95% CI 0.843-0.968] vs. 0.872 [95% CI 0.800-0.944], p < 0.005; high EI group, AUC = 0.954 [95% CI 0.917-0.991] vs. 0.917 [95% CI 0.862-0.973], p < 0.005).
The CSF-mask algorithm improved the performance of the SBR index in informing the diagnosis of PS, especially in cases with ventricle dilatation.
已开发出一种脑脊液(CSF)掩码算法,以减少脑脊液计数低对采用南安普敦方法计算的特异性结合率(SBR)指数诊断效用的不利影响。我们评估了CSF掩码算法对帕金森综合征(PS)(包括帕金森病)SBR指数诊断性能的影响,以及脑室扩张对CSF掩码算法的影响。
我们分别纳入了163例和158例患有和未患有PS的患者。从这些患者的碘-123氟代苯单光子发射计算机断层扫描(SPECT)图像中计算常规SBR(非CSF掩码)和经CSF掩码算法校正的SBR(CSF掩码)。我们比较了相应指数的诊断性能,并评估了CSF掩码算法的效果是否根据脑室扩张程度(用埃文斯指数(EI)评估)而有所不同。采用受试者操作特征(ROC)分析进行统计分析。
ROC分析表明,CSF掩码算法的表现优于非CSF掩码算法(未校正时,曲线下面积[AUC] = 0.917 [95%置信区间(CI)0.887 - 0.947] 对比 0.895 [95% CI 0.861 - 0.929],p < 0.001;衰减校正后,AUC = 0.930 [95% CI 0.902 - 0.957] 对比 0.903 [95% CI 0.870 - 0.936],p < 0.001)。在未进行衰减校正时,低EI组中,非CSF掩码算法和CSF掩码算法的AUC无显著差异(0.927 [95% CI 0.877 - 0.978] 对比 0.942 [95% CI 0.898 - 0.986],p = 0.11);在中EI组和高EI组中,CSF掩码算法的表现优于非CSF掩码算法(中EI组,AUC = 0.894 [95% CI 0.825 - 0.963] 对比 0.872 [95% CI 0.798 - 0.947],p < 0.05;高EI组,AUC = 0.931 [95% CI 0.883 - 0.978] 对比 0.900 [95% CI 0.840 - 0.961],p < 0.01)。在进行衰减校正后,所有三个EI组的AUC均存在显著差异(低EI组,AUC = 0.961 [95% CI 0.924 - 0.998] 对比 0.942 [95% CI 0.895 - 0.988],p < 0.05;中EI组,AUC = 0.905 [95% CI 0.843 - 0.968] 对比 0.872 [95% CI 0.800 - 0.944],p < 0.005;高EI组,AUC = 0.954 [95% CI 0.917 - 0.991] 对比 0.917 [95% CI 0.862 - 0.973],p < 0.005)。
CSF掩码算法提高了SBR指数在PS诊断中的性能,尤其是在脑室扩张的病例中。