Suppr超能文献

利用大规模数据集发现新生儿大脑皮层脑沟折叠模式。

Discovering cortical sulcal folding patterns in neonates using large-scale dataset.

机构信息

Department of Computer Science, University of North Carolina at Chapel Hill, North Carolina.

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina.

出版信息

Hum Brain Mapp. 2018 Sep;39(9):3625-3635. doi: 10.1002/hbm.24199. Epub 2018 Apr 26.

Abstract

The folding of the human cerebral cortex is highly complex and variable across individuals, but certain common major patterns of cortical folding do exist. Mining such common patterns of cortical folding is of great importance in understanding the inter-individual variability of cortical folding and their relationship with cognitive functions and brain disorders. As primary cortical folds are mainly genetically influenced and are well established at term birth, neonates with minimal exposure to the complicated postnatal environmental influences are ideal candidates for mining the major patterns of cortical folding. In this paper, we propose a sulcal-pit-based method to discover the major sulcal patterns of cortical folding. In our method, first, the sulcal pattern is characterized by the spatial distribution of sulcal pits, which are the locally deepest points in cortical sulci. Since deep sulcal pits are genetically related, relatively consistent across individuals, and also stable during brain development, they are well suited for representing and characterizing the sulcal patterns. Then, the similarity between the distributions of sulcal pits is measured from the spatial, geometrical, and topological points of view. Next, a comprehensive similarity matrix is constructed for the whole dataset by adaptively fusing these measurements together, thus capturing both their common and complementary information. Finally, leveraging the similarity matrix, a hierarchical affinity propagation algorithm is used to group similar sulcal folding patterns together. The proposed method has been applied to 677 neonatal brains, and revealed multiple distinct and meaningful sulcal patterns in the central sulcus, superior temporal sulcus, and cingulate sulcus.

摘要

人类大脑皮层的折叠方式高度复杂且因人而异,但确实存在某些常见的主要皮层折叠模式。挖掘这些常见的皮层折叠模式对于理解皮层折叠的个体间变异性及其与认知功能和大脑疾病的关系具有重要意义。由于初级皮层褶皱主要受遗传影响,并在足月出生时就已确立,因此接触复杂的产后环境影响最少的新生儿是挖掘皮层折叠主要模式的理想候选者。在本文中,我们提出了一种基于脑沟-脑回的方法来发现主要的脑沟折叠模式。在我们的方法中,首先,脑沟模式由脑沟中局部最深点——脑沟凹的空间分布来描述。由于深的脑沟凹是与遗传相关的,在个体之间相对一致,并且在大脑发育过程中也很稳定,因此它们非常适合用于表示和描述脑沟模式。然后,从空间、几何和拓扑的角度来测量脑沟凹分布之间的相似性。接下来,通过自适应地融合这些测量值,为整个数据集构建一个综合的相似性矩阵,从而捕获它们的共同和互补信息。最后,利用相似性矩阵,使用分层亲和传播算法将相似的脑沟折叠模式组合在一起。我们的方法已应用于 677 个新生儿大脑,揭示了中央沟、颞上沟和扣带回沟中多个独特且有意义的脑沟模式。

相似文献

1
Discovering cortical sulcal folding patterns in neonates using large-scale dataset.
Hum Brain Mapp. 2018 Sep;39(9):3625-3635. doi: 10.1002/hbm.24199. Epub 2018 Apr 26.
2
Discovering Cortical Folding Patterns in Neonatal Cortical Surfaces Using Large-Scale Dataset.
Med Image Comput Comput Assist Interv. 2016 Oct;9900:10-18. doi: 10.1007/978-3-319-46720-7_2. Epub 2016 Oct 2.
3
Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants.
Neuroimage. 2014 Oct 15;100:206-18. doi: 10.1016/j.neuroimage.2014.06.004. Epub 2014 Jun 17.
4
Exploring folding patterns of infant cerebral cortex based on multi-view curvature features: Methods and applications.
Neuroimage. 2019 Jan 15;185:575-592. doi: 10.1016/j.neuroimage.2018.08.041. Epub 2018 Aug 18.
5
Exploring Gyral Patterns of Infant Cortical Folding based on Multi-view Curvature Information.
Med Image Comput Comput Assist Interv. 2017 Sep;10433:12-20. doi: 10.1007/978-3-319-66182-7_2. Epub 2017 Sep 4.
6
Spatial distribution of deep sulcal landmarks and hemispherical asymmetry on the cortical surface.
Cereb Cortex. 2010 Mar;20(3):602-11. doi: 10.1093/cercor/bhp127. Epub 2009 Jun 26.
7
Sulcal pits and patterns in developing human brains.
Neuroimage. 2019 Jan 15;185:881-890. doi: 10.1016/j.neuroimage.2018.03.057. Epub 2018 Mar 27.
8
9
Group-level cortical surface parcellation with sulcal pits labeling.
Med Image Anal. 2020 Dec;66:101749. doi: 10.1016/j.media.2020.101749. Epub 2020 Aug 26.
10
Deep sulcal landmarks: algorithmic and conceptual improvements in the definition and extraction of sulcal pits.
Neuroimage. 2015 May 1;111:12-25. doi: 10.1016/j.neuroimage.2015.02.008. Epub 2015 Feb 9.

引用本文的文献

1
Identification of rare cortical folding patterns using unsupervised deep learning.
Imaging Neurosci (Camb). 2024 Feb 6;2. doi: 10.1162/imag_a_00084. eCollection 2024.
2
Graph-based prototype inverse-projection for identifying cortical sulcal pattern abnormalities in congenital heart disease.
Med Image Anal. 2025 May;102:103538. doi: 10.1016/j.media.2025.103538. Epub 2025 Feb 28.
3
Population-wise labeling of sulcal graphs using multi-graph matching.
PLoS One. 2023 Nov 9;18(11):e0293886. doi: 10.1371/journal.pone.0293886. eCollection 2023.
4
Fine-grained functional parcellation maps of the infant cerebral cortex.
Elife. 2023 Aug 1;12:e75401. doi: 10.7554/eLife.75401.
6
Morphology of Anterior Cingulate Cortex and Its Relation to Schizophrenia.
J Clin Med. 2022 Dec 21;12(1):33. doi: 10.3390/jcm12010033.
8
Cortical thickness systematically varies with curvature and depth in healthy human brains.
Hum Brain Mapp. 2022 Apr 15;43(6):2064-2084. doi: 10.1002/hbm.25776. Epub 2022 Jan 31.
9
Existence of Functional Connectome Fingerprint during Infancy and Its Stability over Months.
J Neurosci. 2022 Jan 19;42(3):377-389. doi: 10.1523/JNEUROSCI.0480-21.2021. Epub 2021 Nov 17.
10
Group-level cortical surface parcellation with sulcal pits labeling.
Med Image Anal. 2020 Dec;66:101749. doi: 10.1016/j.media.2020.101749. Epub 2020 Aug 26.

本文引用的文献

1
Computational neuroanatomy of baby brains: A review.
Neuroimage. 2019 Jan 15;185:906-925. doi: 10.1016/j.neuroimage.2018.03.042. Epub 2018 Mar 21.
2
A critical view of the quest for brain structural markers of Albert Einstein's special talents (a pot of gold under the rainbow).
Brain Struct Funct. 2018 Jun;223(5):2515-2518. doi: 10.1007/s00429-018-1625-1. Epub 2018 Feb 22.
3
Learning-Based Topological Correction for Infant Cortical Surfaces.
Med Image Comput Comput Assist Interv. 2016 Oct;9900:219-227. doi: 10.1007/978-3-319-46720-7_26. Epub 2016 Oct 2.
4
Development of cortical shape in the human brain from 6 to 24months of age via a novel measure of shape complexity.
Neuroimage. 2016 Jul 15;135:163-76. doi: 10.1016/j.neuroimage.2016.04.053. Epub 2016 May 3.
5
Longitudinal stability of the folding pattern of the anterior cingulate cortex during development.
Dev Cogn Neurosci. 2016 Jun;19:122-7. doi: 10.1016/j.dcn.2016.02.011. Epub 2016 Mar 2.
6
Construction of 4D high-definition cortical surface atlases of infants: Methods and applications.
Med Image Anal. 2015 Oct;25(1):22-36. doi: 10.1016/j.media.2015.04.005. Epub 2015 Apr 17.
7
Deep sulcal landmarks: algorithmic and conceptual improvements in the definition and extraction of sulcal pits.
Neuroimage. 2015 May 1;111:12-25. doi: 10.1016/j.neuroimage.2015.02.008. Epub 2015 Feb 9.
8
Atypical Sulcal Pattern in Children with Developmental Dyslexia and At-Risk Kindergarteners.
Cereb Cortex. 2016 Mar;26(3):1138-1148. doi: 10.1093/cercor/bhu305. Epub 2015 Jan 9.
9
Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants.
Neuroimage. 2014 Oct 15;100:206-18. doi: 10.1016/j.neuroimage.2014.06.004. Epub 2014 Jun 17.
10
Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age.
J Neurosci. 2014 Mar 19;34(12):4228-38. doi: 10.1523/JNEUROSCI.3976-13.2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验