Suppr超能文献

基于多视图曲率信息探索婴儿皮质折叠的脑回模式。

Exploring Gyral Patterns of Infant Cortical Folding based on Multi-view Curvature Information.

作者信息

Duan Dingna, Xia Shunren, Meng Yu, Wang Li, Lin Weili, Gilmore John H, Shen Dinggang, Li Gang

机构信息

Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

出版信息

Med Image Comput Comput Assist Interv. 2017 Sep;10433:12-20. doi: 10.1007/978-3-319-66182-7_2. Epub 2017 Sep 4.

Abstract

The human cortical folding is intriguingly complex in its variability and regularity across individuals. Exploring the principal patterns of cortical folding is of great importance for neuroimaging research. The term-born neonates with minimum exposure to the complicated environments are the ideal candidates to mine the postnatal origins of principal cortical folding patterns. In this work, we propose a novel framework to study the gyral patterns of neonatal cortical folding. Specifically, , we leverage multi-view curvature-derived features to comprehensively characterize the complex and multi-scale nature of cortical folding. , for each feature, we build a dissimilarity matrix for measuring the difference of cortical folding between any pair of subjects. , we convert these dissimilarity matrices as similarity matrices, and nonlinearly fuse them into a single matrix via a similarity network fusion method. , we apply a hierarchical affinity propagation clustering approach to group subjects into several clusters based on the fused similarity matrix. The proposed framework is generic and can be applied to any cortical region, or even the whole cortical surface. Experiments are carried out on a large dataset with 600+ term-born neonates to mine the principal folding patterns of three representative gyral regions.

摘要

人类皮质折叠在个体间的变异性和规律性方面极其复杂。探索皮质折叠的主要模式对神经影像学研究至关重要。足月出生且极少接触复杂环境的新生儿是挖掘主要皮质折叠模式产后起源的理想对象。在这项工作中,我们提出了一个研究新生儿皮质折叠脑回模式的新框架。具体而言,我们利用多视图曲率衍生特征来全面表征皮质折叠的复杂和多尺度性质。对于每个特征,我们构建一个差异矩阵来测量任意一对受试者之间皮质折叠的差异。然后,我们将这些差异矩阵转换为相似性矩阵,并通过相似性网络融合方法将它们非线性融合成一个单一矩阵。最后,我们应用层次亲和传播聚类方法基于融合后的相似性矩阵将受试者分组为几个簇。所提出的框架具有通用性,可应用于任何皮质区域,甚至整个皮质表面。我们在一个包含600多名足月出生新生儿的大型数据集上进行实验,以挖掘三个代表性脑回区域的主要折叠模式。

相似文献

1
Exploring Gyral Patterns of Infant Cortical Folding based on Multi-view Curvature Information.基于多视图曲率信息探索婴儿皮质折叠的脑回模式。
Med Image Comput Comput Assist Interv. 2017 Sep;10433:12-20. doi: 10.1007/978-3-319-66182-7_2. Epub 2017 Sep 4.
5
Gyral net: A new representation of cortical folding organization.脑回网络:一种新的皮质折叠组织表示方法。
Med Image Anal. 2017 Dec;42:14-25. doi: 10.1016/j.media.2017.07.001. Epub 2017 Jul 15.
6
Gyral folding pattern analysis via surface profiling.通过表面描记法进行脑回褶皱模式分析。
Neuroimage. 2010 Oct 1;52(4):1202-14. doi: 10.1016/j.neuroimage.2010.04.263. Epub 2010 May 26.
8
Fetal cortical surface atlas parcellation based on growth patterns.基于生长模式的胎儿皮质表面图谱分割。
Hum Brain Mapp. 2019 Sep;40(13):3881-3899. doi: 10.1002/hbm.24637. Epub 2019 May 20.

引用本文的文献

5
Fetal cortical surface atlas parcellation based on growth patterns.基于生长模式的胎儿皮质表面图谱分割。
Hum Brain Mapp. 2019 Sep;40(13):3881-3899. doi: 10.1002/hbm.24637. Epub 2019 May 20.
7
Computational neuroanatomy of baby brains: A review.婴儿大脑的计算神经解剖学:综述。
Neuroimage. 2019 Jan 15;185:906-925. doi: 10.1016/j.neuroimage.2018.03.042. Epub 2018 Mar 21.

本文引用的文献

2
Cortical folding: when, where, how, and why?脑回形成:何时、何地、如何以及为何?
Annu Rev Neurosci. 2015 Jul 8;38:291-307. doi: 10.1146/annurev-neuro-071714-034128. Epub 2015 Apr 16.
5
Constructing a dictionary of human brain folding patterns.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):117-24. doi: 10.1007/978-3-642-04271-3_15.
6
Spherical demons: fast diffeomorphic landmark-free surface registration.球形恶魔:快速的非刚性地标自由表面配准。
IEEE Trans Med Imaging. 2010 Mar;29(3):650-68. doi: 10.1109/TMI.2009.2030797. Epub 2009 Aug 25.
7
Shape analysis with overcomplete spherical wavelets.使用超完备球面小波进行形状分析。
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):468-76. doi: 10.1007/978-3-540-85988-8_56.
8
Automatic inference of sulcus patterns using 3D moment invariants.使用三维矩不变量自动推断脑沟模式。
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):515-22. doi: 10.1007/978-3-540-75757-3_63.
9
Clustering by passing messages between data points.通过在数据点之间传递信息进行聚类。
Science. 2007 Feb 16;315(5814):972-6. doi: 10.1126/science.1136800. Epub 2007 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验