神经元群体活动的漂移会导致工作记忆随时间恶化。

Drift in Neural Population Activity Causes Working Memory to Deteriorate Over Time.

机构信息

University of Cambridge, Department of Psychology, Cambridge CB2 3EB, United Kingdom

University of Cambridge, Department of Psychology, Cambridge CB2 3EB, United Kingdom.

出版信息

J Neurosci. 2018 May 23;38(21):4859-4869. doi: 10.1523/JNEUROSCI.3440-17.2018. Epub 2018 Apr 27.

Abstract

Short-term memories are thought to be maintained in the form of sustained spiking activity in neural populations. Decreases in recall precision observed with increasing number of memorized items can be accounted for by a limit on total spiking activity, resulting in fewer spikes contributing to the representation of each individual item. Longer retention intervals likewise reduce recall precision, but it is unknown what changes in population activity produce this effect. One possibility is that spiking activity becomes attenuated over time, such that the same mechanism accounts for both effects of set size and retention duration. Alternatively, reduced performance may be caused by drift in the encoded value over time, without a decrease in overall spiking activity. Human participants of either sex performed a variable-delay cued recall task with a saccadic response, providing a precise measure of recall latency. Based on a spike integration model of decision making, if the effects of set size and retention duration are both caused by decreased spiking activity, we would predict a fixed relationship between recall precision and response latency across conditions. In contrast, the drift hypothesis predicts no systematic changes in latency with increasing delays. Our results show both an increase in latency with set size, and a decrease in response precision with longer delays within each set size, but no systematic increase in latency for increasing delay durations. These results were quantitatively reproduced by a model based on a limited neural resource in which working memories drift rather than decay with time. Rapid deterioration over seconds is a defining feature of short-term memory, but what mechanism drives this degradation of internal representations? Here, we extend a successful population coding model of working memory by introducing possible mechanisms of delay effects. We show that a decay in neural signal over time predicts that the time required for memory retrieval will increase with delay, whereas a random drift in the stored value predicts no effect of delay on retrieval time. Testing these predictions in a multi-item memory task with an eye movement response, we identified drift as a key mechanism of memory decline. These results provide evidence for a dynamic spiking basis for working memory, in contrast to recent proposals of activity-silent storage.

摘要

短期记忆被认为是以神经群体中持续的尖峰活动的形式维持的。随着记忆项目数量的增加,观察到的召回精度下降,可以用总尖峰活动的限制来解释,这导致较少的尖峰有助于表示每个单独的项目。较长的保留间隔同样会降低召回精度,但不知道群体活动的哪些变化会产生这种效果。一种可能性是,随着时间的推移,尖峰活动会减弱,因此相同的机制解释了集合大小和保留持续时间的两个影响。或者,性能的降低可能是由于编码值随时间漂移,而整体尖峰活动没有减少。无论性别如何,人类参与者都执行了带有扫视反应的可变延迟提示召回任务,提供了召回潜伏期的精确测量。基于决策的尖峰整合模型,如果集合大小和保留持续时间的影响都是由于尖峰活动减少引起的,我们预计在条件之间,召回精度和响应潜伏期之间会存在固定关系。相比之下,漂移假设预测随着延迟增加,潜伏期不会发生系统变化。我们的结果显示,在每个集合大小内,随着集合大小的增加,潜伏期增加,响应精度降低,而随着延迟持续时间的增加,潜伏期没有系统增加。这些结果通过一个基于有限神经资源的模型得到了定量再现,其中工作记忆随时间漂移而不是衰减。在几秒钟内迅速恶化是短期记忆的一个定义特征,但是什么机制导致了内部表示的这种退化?在这里,我们通过引入可能的延迟效应机制,扩展了工作记忆的成功群体编码模型。我们表明,随着时间的推移,神经信号的衰减预测记忆检索所需的时间将随延迟而增加,而存储值的随机漂移则预测延迟对检索时间没有影响。通过使用眼动反应的多项目记忆任务来测试这些预测,我们确定漂移是记忆衰退的关键机制。这些结果为工作记忆的动态尖峰基础提供了证据,与最近提出的活动静默存储形成对比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad8/5966793/0873c3650fd2/zns9991807830001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索