Suppr超能文献

应对临床试验中的竞争风险:如何选择主要疗效分析?

Dealing with competing risks in clinical trials: How to choose the primary efficacy analysis?

作者信息

Troendle James F, Leifer Eric S, Kunz Lauren

机构信息

Office of Biostatistics Research, Division of Cardiovascular Sciences of the National Heart, Lung, and Blood Institute, NIH/DHHS, Bld RLK2 Room 9196, Bethesda, MD 20892, USA.

出版信息

Stat Med. 2018 Apr 29. doi: 10.1002/sim.7800.

Abstract

We investigate different primary efficacy analysis approaches for a 2-armed randomized clinical trial when interest is focused on a time to event primary outcome that is subject to a competing risk. We extend the work of Friedlin and Korn (2005) by considering estimation as well as testing and by simulating the primary and competing events' times from both a cause-specific hazards model as well as a joint subdistribution-cause-specific hazards model. We show that the cumulative incidence function can provide useful prognostic information for a particular patient but is not advisable for the primary efficacy analysis. Instead, it is preferable to fit a Cox model for the primary event which treats the competing event as an independent censoring. This is reasonably robust for controlling type I error and treatment effect bias with respect to the true primary and competing events' cause-specific hazards model, even when there is a shared, moderately prognostic, unobserved baseline frailty for the primary and competing events in that model. However, when it is plausible that a strongly prognostic frailty exists, combining the primary and competing events into a composite event should be considered. Finally, when there is an a priori interest in having both the primary and competing events in the primary analysis, we compare a bivariate approach for establishing overall treatment efficacy to the composite event approach. The ideas are illustrated by analyzing the Women's Health Initiative clinical trials sponsored by the National Heart, Lung, and Blood Institute.

摘要

当关注的是一个受竞争风险影响的事件发生时间的主要结局时,我们研究了双臂随机临床试验的不同主要疗效分析方法。我们扩展了弗里德林和科恩(2005年)的工作,考虑了估计以及检验,并通过从特定病因风险模型以及联合子分布特定病因风险模型模拟主要事件和竞争事件的时间。我们表明,累积发病率函数可为特定患者提供有用的预后信息,但不适合用于主要疗效分析。相反,更可取的是为主要事件拟合一个Cox模型,将竞争事件视为独立的删失。即使在该模型中主要事件和竞争事件存在共同的、中度预后的、未观察到的基线脆弱性,对于控制I型错误和相对于真实主要事件和竞争事件的特定病因风险模型的治疗效果偏差而言,这也是相当稳健的。然而,当存在强烈预后脆弱性的情况看似合理时,应考虑将主要事件和竞争事件合并为一个复合事件。最后,当在主要分析中对同时纳入主要事件和竞争事件有先验兴趣时,我们将用于确定总体治疗疗效的双变量方法与复合事件方法进行了比较。通过分析由美国国家心肺血液研究所赞助的女性健康倡议临床试验来说明这些想法。

相似文献

2
The importance of censoring in competing risks analysis of the subdistribution hazard.
BMC Med Res Methodol. 2017 Apr 4;17(1):52. doi: 10.1186/s12874-017-0327-3.
3
Random Survival Forests With Competing Events: A Subdistribution-Based Imputation Approach.
Biom J. 2024 Sep;66(6):e202400014. doi: 10.1002/bimj.202400014.
6
Analysis and design of randomised clinical trials involving competing risks endpoints.
Trials. 2011 May 19;12:127. doi: 10.1186/1745-6215-12-127.
7
Statistical Methods for Cohort Studies of CKD: Survival Analysis in the Setting of Competing Risks.
Clin J Am Soc Nephrol. 2017 Jul 7;12(7):1181-1189. doi: 10.2215/CJN.10301016. Epub 2017 Feb 27.

引用本文的文献

本文引用的文献

1
Introduction to the Analysis of Survival Data in the Presence of Competing Risks.
Circulation. 2016 Feb 9;133(6):601-9. doi: 10.1161/CIRCULATIONAHA.115.017719.
2
Planning and evaluating clinical trials with composite time-to-first-event endpoints in a competing risk framework.
Stat Med. 2013 Sep 20;32(21):3595-608. doi: 10.1002/sim.5798. Epub 2013 Apr 2.
3
A competing risks analysis should report results on all cause-specific hazards and cumulative incidence functions.
J Clin Epidemiol. 2013 Jun;66(6):648-53. doi: 10.1016/j.jclinepi.2012.09.017. Epub 2013 Feb 14.
5
Accounting for death as a competing risk in cancer-associated thrombosis studies.
Thromb Res. 2012 Apr;129 Suppl 1:S85-7. doi: 10.1016/S0049-3848(12)70023-3.
6
Competing risks and the clinical community: irrelevance or ignorance?
Stat Med. 2012 May 20;31(11-12):1089-97. doi: 10.1002/sim.4384. Epub 2011 Sep 23.
7
Understanding competing risks: a simulation point of view.
BMC Med Res Methodol. 2011 Jun 3;11:86. doi: 10.1186/1471-2288-11-86.
8
Analysis and design of randomised clinical trials involving competing risks endpoints.
Trials. 2011 May 19;12:127. doi: 10.1186/1745-6215-12-127.
9
Simulating competing risks data in survival analysis.
Stat Med. 2009 Mar 15;28(6):956-71. doi: 10.1002/sim.3516.
10
Cumulative incidence in competing risks data and competing risks regression analysis.
Clin Cancer Res. 2007 Jan 15;13(2 Pt 1):559-65. doi: 10.1158/1078-0432.CCR-06-1210.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验