Zhang Baqun, Tsiatis Anastasios A, Davidian Marie, Zhang Min, Laber Eric
Department of Preventive Medicine, Northwestern University, Chicago, 60611, U.S.A.
Stat. 2012 Jan 1;1(1):103-114. doi: 10.1002/sta.411.
A treatment regime maps observed patient characteristics to a recommended treatment. Recent technological advances have increased the quality, accessibility, and volume of patient-level data; consequently, there is a growing need for powerful and flexible estimators of an optimal treatment regime that can be used with either observational or randomized clinical trial data. We propose a novel and general framework that transforms the problem of estimating an optimal treatment regime into a classification problem wherein the optimal classifier corresponds to the optimal treatment regime. We show that commonly employed parametric and semi-parametric regression estimators, as well as recently proposed robust estimators of an optimal treatment regime can be represented as special cases within our framework. Furthermore, our approach allows any classification procedure that can accommodate case weights to be used without modification to estimate an optimal treatment regime. This introduces a wealth of new and powerful learning algorithms for use in estimating treatment regimes. We illustrate our approach using data from a breast cancer clinical trial.
一种治疗方案将观察到的患者特征映射到推荐的治疗方法上。最近的技术进步提高了患者层面数据的质量、可及性和数量;因此,越来越需要能够与观察性或随机临床试验数据一起使用的强大且灵活的最优治疗方案估计器。我们提出了一个新颖且通用的框架,该框架将估计最优治疗方案的问题转化为一个分类问题,其中最优分类器对应于最优治疗方案。我们表明,常用的参数和半参数回归估计器,以及最近提出的最优治疗方案的稳健估计器,都可以在我们的框架内表示为特殊情况。此外,我们的方法允许任何能够适应病例权重的分类程序无需修改即可用于估计最优治疗方案。这引入了大量用于估计治疗方案的新的强大学习算法。我们使用来自乳腺癌临床试验的数据来说明我们的方法。