Suppr超能文献

通过电解质门控对 WS2 纳米器件中电子态的电场控制

Electric-field Control of Electronic States in WS2 Nanodevices by Electrolyte Gating.

作者信息

Qin Feng, Ideue Toshiya, Shi Wu, Zhang Yijin, Suzuki Ryuji, Yoshida Masaro, Saito Yu, Iwasa Yoshihiro

机构信息

Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo.

Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo;

出版信息

J Vis Exp. 2018 Apr 12(134):56862. doi: 10.3791/56862.

Abstract

A method of carrier number control by electrolyte gating is demonstrated. We have obtained WS2 thin flakes with atomically flat surface via scotch tape method or individual WS2 nanotubes by dispersing the suspension of WS2 nanotubes. The selected samples have been fabricated into devices by the use of the electron beam lithography and electrolyte is put on the devices. We have characterized the electronic properties of the devices under applying the gate voltage. In the small gate voltage region, ions in the electrolyte are accumulated on the surface of the samples which leads to the large electric potential drop and resultant electrostatic carrier doping at the interface. Ambipolar transfer curve has been observed in this electrostatic doping region. When the gate voltage is further increased, we met another drastic increase of source-drain current which implies that ions are intercalated into layers of WS2 and electrochemical carrier doping is realized. In such electrochemical doping region, superconductivity has been observed. The focused technique provides a powerful strategy for achieving the electric-filed-induced quantum phase transition.

摘要

展示了一种通过电解质门控控制载流子数量的方法。我们通过胶带法获得了具有原子级平整表面的WS2薄片,或通过分散WS2纳米管悬浮液获得了单个WS2纳米管。通过电子束光刻将选定的样品制成器件,并在器件上施加电解质。我们在施加栅极电压的情况下对器件的电学性质进行了表征。在小栅极电压区域,电解质中的离子积累在样品表面,导致大的电势降和界面处的静电载流子掺杂。在这个静电掺杂区域观察到了双极性转移曲线。当栅极电压进一步增加时,我们遇到源漏电流的另一次急剧增加,这意味着离子插入到WS2层中,实现了电化学载流子掺杂。在这样的电化学掺杂区域中,观察到了超导性。聚焦技术为实现电场诱导的量子相变提供了一种强有力的策略。

相似文献

2
Realizing lateral wrap-gated nanowire FETs: controlling gate length with chemistry rather than lithography.
Nano Lett. 2012 Jan 11;12(1):1-6. doi: 10.1021/nl104403g. Epub 2011 Feb 15.
3
Enhanced channel modulation in dual-gated silicon nanowire transistors.
Nano Lett. 2005 Dec;5(12):2519-23. doi: 10.1021/nl051855i.
4
Measuring the capacitance of individual semiconductor nanowires for carrier mobility assessment.
Nano Lett. 2007 Jun;7(6):1561-5. doi: 10.1021/nl070378w. Epub 2007 May 8.
5
Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors.
Nano Lett. 2012 Oct 10;12(10):5218-23. doi: 10.1021/nl302389d. Epub 2012 Sep 21.
6
Full Control of Solid-State Electrolytes for Electrostatic Gating.
Adv Mater. 2023 May;35(18):e2211993. doi: 10.1002/adma.202211993. Epub 2023 Mar 23.
7
Impact of electrostatic doping on carrier concentration and mobility in InAs nanowires.
Nanotechnology. 2021 Apr 2;32(14):145204. doi: 10.1088/1361-6528/abd659.
8
Impact of Large Gate Voltages and Ultrathin Polymer Electrolytes on Carrier Density in Electric-Double-Layer-Gated Two-Dimensional Crystal Transistors.
ACS Appl Mater Interfaces. 2023 Mar 29;15(12):15785-15796. doi: 10.1021/acsami.2c13140. Epub 2023 Mar 16.
10
Highly Stable and Tunable Chemical Doping of Multilayer WS2 Field Effect Transistor: Reduction in Contact Resistance.
ACS Appl Mater Interfaces. 2015 Oct 28;7(42):23589-96. doi: 10.1021/acsami.5b06825. Epub 2015 Oct 13.

引用本文的文献

1

本文引用的文献

1
Endeavor of Iontronics: From Fundamentals to Applications of Ion-Controlled Electronics.
Adv Mater. 2017 Jul;29(25). doi: 10.1002/adma.201607054. Epub 2017 Jun 5.
2
Electric-field control of tri-state phase transformation with a selective dual-ion switch.
Nature. 2017 Jun 1;546(7656):124-128. doi: 10.1038/nature22389. Epub 2017 May 31.
3
Superconductivity in a chiral nanotube.
Nat Commun. 2017 Feb 16;8:14465. doi: 10.1038/ncomms14465.
4
Lithium-ion-based solid electrolyte tuning of the carrier density in graphene.
Sci Rep. 2016 Oct 4;6:34816. doi: 10.1038/srep34816.
5
Gate-Tuned Thermoelectric Power in Black Phosphorus.
Nano Lett. 2016 Aug 10;16(8):4819-24. doi: 10.1021/acs.nanolett.6b00999. Epub 2016 Aug 1.
6
Gate-Optimized Thermoelectric Power Factor in Ultrathin WSe2 Single Crystals.
Nano Lett. 2016 Mar 9;16(3):2061-5. doi: 10.1021/acs.nanolett.6b00075. Epub 2016 Feb 10.
7
Gate-induced superconductivity in atomically thin MoS2 crystals.
Nat Nanotechnol. 2016 Apr;11(4):339-44. doi: 10.1038/nnano.2015.314. Epub 2016 Jan 11.
8
Metallic ground state in an ion-gated two-dimensional superconductor.
Science. 2015 Oct 23;350(6259):409-13. doi: 10.1126/science.1259440. Epub 2015 Oct 1.
9
Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating.
Sci Rep. 2015 Aug 3;5:12534. doi: 10.1038/srep12534.
10
Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating.
ACS Nano. 2015 Mar 24;9(3):3192-8. doi: 10.1021/acsnano.5b00497. Epub 2015 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验