Department of Pathology and Immunology, Washington University in St Louis School of Medicine, Saint Louis, MO, USA.
The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine, Saint Louis, MO, USA.
Nat Chem Biol. 2018 Jun;14(6):556-564. doi: 10.1038/s41589-018-0052-1. Epub 2018 Apr 30.
The soil microbiome can produce, resist, or degrade antibiotics and even catabolize them. While resistance genes are widely distributed in the soil, there is a dearth of knowledge concerning antibiotic catabolism. Here we describe a pathway for penicillin catabolism in four isolates. Genomic and transcriptomic sequencing revealed β-lactamase, amidase, and phenylacetic acid catabolon upregulation. Knocking out part of the phenylacetic acid catabolon or an apparent penicillin utilization operon (put) resulted in loss of penicillin catabolism in one isolate. A hydrolase from the put operon was found to degrade in vitro benzylpenicilloic acid, the β-lactamase penicillin product. To test the generality of this strategy, an Escherichia coli strain was engineered to co-express a β-lactamase and a penicillin amidase or the put operon, enabling it to grow using penicillin or benzylpenicilloic acid, respectively. Elucidation of additional pathways may allow bioremediation of antibiotic-contaminated soils and discovery of antibiotic-remodeling enzymes with industrial utility.
土壤微生物组可以产生、抵抗或降解抗生素,甚至可以代谢它们。虽然抗性基因广泛分布于土壤中,但对抗生素代谢的了解却很少。在这里,我们描述了四个分离株中青霉素代谢途径。基因组和转录组测序显示β-内酰胺酶、酰胺酶和苯乙酸分解代谢物上调。敲除苯乙酸分解代谢物的一部分或明显的青霉素利用操纵子(put)会导致一个分离株失去青霉素代谢能力。从 put 操纵子中发现一种水解酶,可在体外降解β-内酰胺酶青霉素产物苯芐基青霉素酸。为了测试这种策略的普遍性,我们构建了一个大肠杆菌菌株,使其共表达β-内酰胺酶和青霉素酰胺酶或 put 操纵子,使其分别能够使用青霉素或苯芐基青霉素酸生长。阐明其他途径可能允许对抗生素污染土壤进行生物修复,并发现具有工业用途的抗生素重塑酶。