Suppr超能文献

土壤微生物组中β-内酰胺代谢的共有策略。

Shared strategies for β-lactam catabolism in the soil microbiome.

机构信息

Department of Pathology and Immunology, Washington University in St Louis School of Medicine, Saint Louis, MO, USA.

The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine, Saint Louis, MO, USA.

出版信息

Nat Chem Biol. 2018 Jun;14(6):556-564. doi: 10.1038/s41589-018-0052-1. Epub 2018 Apr 30.

Abstract

The soil microbiome can produce, resist, or degrade antibiotics and even catabolize them. While resistance genes are widely distributed in the soil, there is a dearth of knowledge concerning antibiotic catabolism. Here we describe a pathway for penicillin catabolism in four isolates. Genomic and transcriptomic sequencing revealed β-lactamase, amidase, and phenylacetic acid catabolon upregulation. Knocking out part of the phenylacetic acid catabolon or an apparent penicillin utilization operon (put) resulted in loss of penicillin catabolism in one isolate. A hydrolase from the put operon was found to degrade in vitro benzylpenicilloic acid, the β-lactamase penicillin product. To test the generality of this strategy, an Escherichia coli strain was engineered to co-express a β-lactamase and a penicillin amidase or the put operon, enabling it to grow using penicillin or benzylpenicilloic acid, respectively. Elucidation of additional pathways may allow bioremediation of antibiotic-contaminated soils and discovery of antibiotic-remodeling enzymes with industrial utility.

摘要

土壤微生物组可以产生、抵抗或降解抗生素,甚至可以代谢它们。虽然抗性基因广泛分布于土壤中,但对抗生素代谢的了解却很少。在这里,我们描述了四个分离株中青霉素代谢途径。基因组和转录组测序显示β-内酰胺酶、酰胺酶和苯乙酸分解代谢物上调。敲除苯乙酸分解代谢物的一部分或明显的青霉素利用操纵子(put)会导致一个分离株失去青霉素代谢能力。从 put 操纵子中发现一种水解酶,可在体外降解β-内酰胺酶青霉素产物苯芐基青霉素酸。为了测试这种策略的普遍性,我们构建了一个大肠杆菌菌株,使其共表达β-内酰胺酶和青霉素酰胺酶或 put 操纵子,使其分别能够使用青霉素或苯芐基青霉素酸生长。阐明其他途径可能允许对抗生素污染土壤进行生物修复,并发现具有工业用途的抗生素重塑酶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a08/5964007/ab7b54e31393/nihms949767f1.jpg

相似文献

1
Shared strategies for β-lactam catabolism in the soil microbiome.
Nat Chem Biol. 2018 Jun;14(6):556-564. doi: 10.1038/s41589-018-0052-1. Epub 2018 Apr 30.
3
A Two-Component-System-Governed Regulon That Includes a β-Lactamase Gene is Responsive to Cell Envelope Disturbance.
mBio. 2022 Aug 30;13(4):e0174922. doi: 10.1128/mbio.01749-22. Epub 2022 Aug 15.
5
Beta-lactamase genes of the penicillin-susceptible Bacillus anthracis Sterne strain.
J Bacteriol. 2003 Feb;185(3):823-30. doi: 10.1128/JB.185.3.823-830.2003.
6
Structural analysis of the role of Pseudomonas aeruginosa penicillin-binding protein 5 in β-lactam resistance.
Antimicrob Agents Chemother. 2013 Jul;57(7):3137-46. doi: 10.1128/AAC.00505-13. Epub 2013 Apr 29.
7
Human metallo-β-lactamase enzymes degrade penicillin.
Sci Rep. 2019 Aug 21;9(1):12173. doi: 10.1038/s41598-019-48723-y.
8
Isolation and characterization of a new strain of Achromobacter sp. with beta-lactam antibiotic acylase activity.
Appl Microbiol Biotechnol. 2003 Oct;62(5-6):507-16. doi: 10.1007/s00253-003-1353-0. Epub 2003 Jun 24.

引用本文的文献

1
Assessment of Biodegradation Mechanisms of Ceftiofur Sodium by sp. CS-1 and Insights from Transcriptomic Analysis.
Microorganisms. 2025 Jun 16;13(6):1404. doi: 10.3390/microorganisms13061404.
2
The Impact of Tetracycline on the Soil Microbiome and the Rhizosphere of Lettuce ( L.).
Int J Mol Sci. 2025 Mar 21;26(7):2854. doi: 10.3390/ijms26072854.
3
Emerging antibiotic resistance by various novel proteins/enzymes.
Eur J Clin Microbiol Infect Dis. 2025 Apr 15. doi: 10.1007/s10096-025-05126-4.
5
Engineering bacteriophages for targeted superbug eradication.
Mol Biol Rep. 2025 Feb 11;52(1):221. doi: 10.1007/s11033-025-10332-6.
6
Expanding the β-Lactamase Family in the Human Microbiome.
Adv Sci (Weinh). 2024 Dec;11(46):e2403563. doi: 10.1002/advs.202403563. Epub 2024 Oct 24.
7
Microbial degradation of contaminants of emerging concern: metabolic, genetic and omics insights for enhanced bioremediation.
Front Bioeng Biotechnol. 2024 Sep 19;12:1470522. doi: 10.3389/fbioe.2024.1470522. eCollection 2024.
8
Screening and Selection of Antibiotics for Enhanced Production of Astaxanthin by .
Life (Basel). 2024 Aug 2;14(8):977. doi: 10.3390/life14080977.
9
Impact of veterinary pharmaceuticals on environment and their mitigation through microbial bioremediation.
Front Microbiol. 2024 Jul 8;15:1396116. doi: 10.3389/fmicb.2024.1396116. eCollection 2024.

本文引用的文献

1
Draft Genome Sequences of Three β-Lactam-Catabolizing Soil .
Genome Announc. 2017 Aug 10;5(32):e00653-17. doi: 10.1128/genomeA.00653-17.
2
Next-generation approaches to understand and combat the antibiotic resistome.
Nat Rev Microbiol. 2017 Jul;15(7):422-434. doi: 10.1038/nrmicro.2017.28. Epub 2017 Apr 10.
4
Interconnected microbiomes and resistomes in low-income human habitats.
Nature. 2016 May 12;533(7602):212-6. doi: 10.1038/nature17672.
5
MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.
Mol Biol Evol. 2016 Jul;33(7):1870-4. doi: 10.1093/molbev/msw054. Epub 2016 Mar 22.
6
Study of the Aminoglycoside Subsistence Phenotype of Bacteria Residing in the Gut of Humans and Zoo Animals.
Front Microbiol. 2016 Jan 11;6:1550. doi: 10.3389/fmicb.2015.01550. eCollection 2015.
7
Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange.
Nat Protoc. 2015 Nov;10(11):1820-41. doi: 10.1038/nprot.2015.115. Epub 2015 Oct 22.
8
The Phyre2 web portal for protein modeling, prediction and analysis.
Nat Protoc. 2015 Jun;10(6):845-58. doi: 10.1038/nprot.2015.053. Epub 2015 May 7.
9
Molecular mechanisms of antibiotic resistance.
Nat Rev Microbiol. 2015 Jan;13(1):42-51. doi: 10.1038/nrmicro3380. Epub 2014 Dec 1.
10
UniProt: a hub for protein information.
Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12. doi: 10.1093/nar/gku989. Epub 2014 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验